期刊文献+

基于面向对象的降水粒子识别研究

OBJECT-ORIENTED HYDROMETEOR CLASSIFICATION BASED ON POPLARIMETRIC RADAR OBSERVATIONS
在线阅读 下载PDF
导出
摘要 双偏振雷达的主要用途之一就是降水粒子识别,目前主流的方法为模糊逻辑分类(FL),但是该方法仅使用单个距离库的信息,易受到噪声的影响。基于模糊逻辑方法的不足,利用聚类分析,提出了一种面向对象的降水粒子分类方法,即在模糊逻辑分类基础上考虑距离库与不同降水粒子的距离以及周围距离库类别信息。基于广州S波段双偏振雷达的观测数据进行降水粒子识别验证,结果表明使用的面向对象的降水粒子识别方法可有效地降低噪声对分类结果的影响,且符合降水粒子的微物理特征。 One of the main uses of dual-polarization radar is hydrometeor classification.At present,the mainstream hydrometeor classification algorithm is fuzzy logic classification(FL),but this method only uses information from a range bin,which is vulnerable to noise.Based on the limitation of the fuzzy logic method,this paper employs cluster analysis and proposes an object-oriented precipitation particle classification method,which considers the distance between the distance database and different hydrometeor and the surrounding range bin category information based on fuzzy logic classification.To verify the accuracy of hydrometeor classification,the observed data from the Guangzhou S-band dual-polarization radar is utilized in this paper.The results show that the object-oriented hydrometeor classification algorithm used in this paper can effectively reduce the impact of noise on the classification results,and the classification results are consistent with the microphysical characteristics of hydrometeors.
作者 刘陈帅 陈生 LIU Chenshuai;CHEN Shen(School of Atmospheric Sciences,Sun Yat-sen University,Guangzhou 510275,China;Guangdong Province Key Laboratory for Climate Change and Natural Disaster Studies,Sun Yat-sen University,Zhuhai,Guangdong 519082,China;Key Laboratory of Tropical Atmosphere-Ocean System(Sun Yat-sen University),Ministry of Education,Zhuhai,Guangdong 519000,China;Southern Laboratory of Ocean Science and Engineering,Zhuhai,Guangdong 519028,China;Key Laboratory of Remote Sensing of Gansu Province,Heihe Remote Sensing Experimental Research Station,Northwest Institute of Eco-Environment and Resources,Chinese Academy of Sciences,Lanzhou 730000,China)
出处 《热带气象学报》 CSCD 北大核心 2023年第4期593-602,共10页 Journal of Tropical Meteorology
基金 国家自然科学基金项目(41875182) 广西自然科学基金项目(2020GXNSFAA238046) 广州市科技局计划项目(201904010162) 中山大学“百人计划”项目(74110-18841203) 广东省气候变化与自然灾害研究重点实验室(2020B1212060025) 北部湾环境演变与资源利用教育部重点实验室开发基金(NNNU-KLOP-K2103)共同资助。
关键词 面向对象 降水粒子识别 模糊逻辑分类 Kmeans聚类 object-oriented hydrometeor classification fuzzy logic classification k-means clustering
  • 相关文献

参考文献8

二级参考文献100

共引文献225

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部