摘要
通过在树脂基体中分别加入抗静电剂(导电炭黑、导电炭纤维),开发出复合材料锚杆成型用抗静电树脂基体,制备了抗静电及力学性能优异的树脂。研究了不同用量的抗静电剂对树脂浇铸体的表面电阻和力学性能的影响。研究结果表明:当加入炭黑≥1.0份时,表面电阻满足矿用锚杆要求(表面电阻≤3×10^(8)Ω),树脂浇铸体的拉伸强度>57 MPa,冲击强度≥28 kJ/m^(2);当加入炭纤维≥1.0份时,表面电阻满足矿用锚杆要求,树脂浇铸体的拉伸强度>60 MPa,冲击强度≥24 kJ/m^(2),有较高的力学性能。以炭纤维1.0份配方为研究对象,采用差示扫描量热法和极值法研究了树脂固化反应动力学,固化反应活化能为65.8 kJ/mol。该树脂适用于拉挤成型,可应用于矿用锚杆的制备,制得的锚杆可实现长久性抗静电。
By adding antistatic agents(conductive carbon black and conductive carbon fiber)to the resin matrix,an antistatic resin matrix for composite anchor bolt molding was developed,and the resin with excellent antistatic and mechanical properties was prepared.The effect of different amounts of antistatic agents on the surface resistance and mechanical properties of resin casting was studied.The research results showed that when adding carbon black≥1.0 parts,the surface resistance met the requirement for mining anchor bolt(surface resistance≤3×10^(8)Ω),the tensile strength of resin casting body>57 MPa,and the impact strength≥28 kJ/m^(2).When adding carbon fiber≥1.0 parts,the surface resistance met the requirement for mining anchor bolt,the tensile strength of resin casting body>60 MPa,and the impact strength≥24 kJ/m^(2),indicating high mechanical properties.With the 1.0 part formulation of carbon fiber as the research object,the kinetics of resin curing reaction was studied by using differential scanning calorimetry and extreme value method,and the activation energy of curing reaction was 65.8 kJ/mol.This resin was suitable for pultrusion processing and could be applied to the preparation of mining anchor bolt,and the prepared anchor bolt could achieve long-term antistatic properties.
作者
佘永明
冯笑
肖杰
张旭锋
She Yongming;Feng Xiao;Xiao Jie;Zhang Xufeng(China Shenhua Energy Co.,Ltd.Shendong Coal Branch,Yulin 719300,Shaanxi,China;Shandong AOZO New Materials Co.,Ltd.,Tengzhou 277500,Shandong,China;School of Materials Science&Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处
《中国胶粘剂》
CAS
2023年第8期37-42,共6页
China Adhesives
关键词
环氧树脂
抗静电
表面电阻
活化能
epoxy resin
antistatic
surface resistance
activation energy