摘要
最近,天然异质结(PbSe)_(5)(Bi_(2)Se_(3))_(6)在理论上预测并实验证实为拓扑绝缘体.本文通过高压原位量子调控在(PbSe)_(5)(Bi_(2)Se_(3))_(6)中成功引入超导电性.当压力增加到10 GPa时,超导电性突然出现,T_(c)约为4.6 K,随后T_(c)急剧下降.值得注意的是,当进一步施加压力到30 GPa以上时,出现了一种新的超导态,且T_(c)直到本实验最高压力仍未饱和.结合XRD和拉曼光谱,我们认为(PbSe)_(5)(Bi_(2)Se_(3))_(6)中两个超导态的出现与压力诱导的结构相变有关.拓扑异质结压力下出现新的量子态,为进一步研究拓扑和超导的关系提供了一个良好的平台.
Recently,the natural heterostructure of(PbSe)_(5)(Bi_(2)Se_(3))_(6)has been theoretically predicted and experimentally confirmed as a topological insulator.In this work,we induce superconductivity in(PbSe)_(5)(Bi_(2)Se_(3))_(6)by implementing high pressures.As the pressure increases up to 10 GPa,superconductivity with a critical temperature(T_(c))~4.6 K suddenly appears,which is followed by an abrupt decrease.Remarkably,upon further compression above 30 GPa,a new superconducting state arises,where pressure raises the T_(c) to an unsaturated 6.0 K within the limit of our research.Combining X-ray diffraction and Raman spectroscopy,we suggest that the emergence of the two distinct superconducting states occurs concurrently with the pressure-induced structural transition in this topological heterostructure(PbSe)_(5)(Bi_(2)Se_(3))_(6).
作者
裴翠颖
朱鹏
李炳谈
赵毅
高玲玲
李昌华
朱世豪
张庆华
应天平
谷林
高波
缑慧阳
姚延荪
孙建
刘寒雨
陈宇林
王秩伟
姚裕贵
齐彦鹏
Cuiying Pei;Peng Zhu;Bingtan Li;Yi Zhao;Lingling Gao;Changhua Li;Shihao Zhu;Qinghua Zhang;Tianping Ying;Lin Gu;Bo Gao;Huiyang Gou;Yansun Yao;Jian Sun;Hanyu Liu;Yulin Chen;Zhiwei Wang;Yugui Yao;Yanpeng Qi(School of Physical Science and Technology,ShanghaiTech University,Shanghai 201210,China;Centre for Quantum Physics,Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement(MOE),School of Physics,Beijing;Institute of Technology,Beijing 100081,China;Beijing Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems,Beijing Institute of Technology,Beijing 100081,China;Material Science Center,Yangtze Delta Region Academy of Beijing Institute of Technology,Jiaxing 314011,China;State Key Laboratory of Superhard Materials and International Center for Computational Method and Software,College of Physics,Jilin University,Changchun 130012,China;International Center of Future Science,Jilin University,Changchun 130012,China 7 Beijing National Laboratory for Condensed Matter Physics,Institute of Physics,Chinese Academy of Sciences,Beijing 100190,China;Center for High Pressure Science and Technology Advanced Research,Beijing 100094,China;Department of Physics and Engineering Physics,University of Saskatchewan,Saskatoon,Saskatchewan S7N 5E2,Canada;National Laboratory of Solid State Microstructures,School of Physics and Collaborative Innovation Center of Advanced Microstructures,Nanjing University,Nanjing 210093,China;ShanghaiTech Laboratory for Topological Physics,ShanghaiTech University,Shanghai 201210,China;Department of Physics,Clarendon Laboratory,University of Oxford,Parks Road,Oxford OX13PU,UK;Shanghai Key Laboratory of High-resolution Electron Microscopy,ShanghaiTech University,Shanghai 201210,China)
基金
supported by the National Natural Science Foundation of China(12004252,52272265,U1932217,11974246,52072400,52025025,and 92065109)
the National Key R&D Program of China(2018YFA0704300,2021YFA1401800,2018YFE0202601,2020YFA0308800,and 2022YFA1403400)
Shanghai Science and Technology Plan(21DZ2260400)
Beijing Natural Science Foundation(Z190010,Z210006,and Z190006)
the support from the Analytical Instrumentation Center(#SPST-AIC10112914),School of Physical Science and Technology(SPST),ShanghaiTech University。