期刊文献+

基于PSO-SVM的表面肌电信号多手势识别 被引量:3

Multi-gesture recognition of SEMG signals based on PSO-SVM
在线阅读 下载PDF
导出
摘要 作为人机交互的一种重要形式,手势识别在医疗康复领域已尤显重要。针对手势识别技术存在的不足,提出粒子群优化支持向量机(PSO-SVM)的多手势精确识别方法。首先,利用表面肌电信号采集仪采集16种手势所对应的表面肌电信号(SEMG);其次,分别从时域、频域和时频域提取所需要的SEMG特征;然后,采用主成分分析法(PCA)对数据特征进行降维;最后,使用PSO-SVM对降维后的数据特征进行分类识别。经过与传统支持向量机(SVM)分类以及遗传算法优化支持向量机分类(GA-SVM)相对比,本方法识别精度高、速度快,研究结果可为手势识别提供新的思路,为人体上肢动作判断和上肢康复机器人的研究提供参考。 As an important form of human-computer interaction,gesture recognition has become the focus of research in the field of medical rehabilitation.Aiming at the shortcomings of gesture recognition technology,a multi-gesture accurate recognition method based on particle swarm optimization support vector machine(PSO-SVM)is proposed.Firstly,surface electromyography(SEMG)signals corresponding to 16 kinds of human gestures are collected by surface electromyography signal acquisition instrument.Secondly,SEMG features are extracted from time domain,frequency domain and time-frequency domain respectively.Then,principal component analysis(PCA)is used to reduce the dimension of data features.Finally,according to the data characteristics,PSO-SVM is used for classification and recognition.Compared with traditional support vector machine(SVM)classification and genetic algorithm optimized support vector machine classification(GA-SVM),this method has high recognition accuracy and speed.The research results can provide a new idea for gesture recognition,and provide the reference for human upper limb motion judgment and the research of upper limb rehabilitation robot.
作者 王博 闫娟 杨慧斌 徐春波 吴晗 WANG Bo;YAN Juan;YANG Huibin;XU Chunbo;WU Han(School of Mechanical and Automotive Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《智能计算机与应用》 2023年第7期173-178,共6页 Intelligent Computer and Applications
关键词 手势识别 表面肌电信号 主成分分析 粒子群优化 支持向量机 gesture recognition surface electromyography signal principal component analysis particle swarm optimization support vector machine
  • 相关文献

参考文献13

二级参考文献82

共引文献303

同被引文献30

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部