期刊文献+

联合SIFT-GPU和整体平差法的隧道影像拼接研究 被引量:1

Tunnel Image Stitching Based on Scale-Invariant Feature Transform-Graphics Processing Unit and Integral Adjustment Method
在线阅读 下载PDF
导出
摘要 针对当前隧道影像拼接过程中效率低、累积误差大的问题,研究提出一种联合SIFT-GPU(scale-invariant feature transformgraphics processing unit)协同处理算法和整体平差法的隧道影像拼接技术。首先,基于车载移动测量技术获取隧道内部的影像和点云数据,利用点云数据和共线方程对原始影像进行纠正处理,并先后使用MASK匀光算法和Wallis滤波匀光法对影像进行匀光匀色;然后,融合SIFT匹配算法和GPU-CPU(central processing unit)协同处理技术加速提取所有待拼接影像特征点,使用RANSAC(random sample consensus)算法剔除误配点;最后,使用平移旋转缩放变换模型对400张影像进行拼接,采用整体平差算法对拼接结果进行误差补偿,利用GDAL(geospatial data abstraction library)分块处理技术输出拼接成果。研究结果表明:1)相较于原始的SIFT匹配算法,研究使用的SIFT-GPU协同处理算法使影像匹配效率提高了3~25倍;2)整体平差算法较好地解决了随着待拼接影像的增加而引起的误差累积问题,相较于传统算法,误差降低至原来的1/3。 The existing tunnel image stitching is inefficient and prone to large cumulative errors.Therefore,a technology for tunnel image stitching based on a collaborative processing algorithm of scale-invariant feature transform(SIFT)-graphics processing unit(GPU)and integral adjustment method is required.First,the image and point cloud data inside the tunnel are obtained using vehicle-mounted mobile measurement technology;the original image is corrected using point cloud data and collinear equation,and the light and color are homogenized using the MASK smoothing algorithm and Wallis filter smoothing method.Then,the SIFT matching algorithm is integrated using a collaborative processing technology of the GPU-central processing unit to extract feature points of all images to be stitched,and the random sample consensus algorithm is used to remove mismatches.Finally,a translation rotation scaling model is used to stitch 400 images,the global adjustment algorithm is used to compensate for the error,and the block processing technology of the geospatial data abstraction library is used to output the results.According to the experimental findings,the collaborative processing algorithm of SIFT-GPU can improve image-matching efficiency by 3 to 25 times compared to the original SIFT matching algorithm.Compared to the original algorithm,the integral adjustment algorithm can more effectively address the error accumulation problem caused by the increase of the image to be stitched,resulting in a threefold reduction in error.
作者 张栋樑 宫志群 杨世廷 陆业宁 占静 安晓亚 ZHANG Dongliang;GONG Zhiqun;YANG Shiting;LU Yening;ZHAN Jing;AN Xiaoya(China Construction Infrastructure Co.,Ltd.,Beijing 100029,China;Wuhan Tianjihang Information Technology Co.,Ltd.,Wuhan 430074,Hubei,China;Xi′an Research Institute of Surveying and Mapping,Xi′an 710054,Shaanxi,China;State Key Laboratory of Geo-information Engineering,Xi′an 710054,Shaanxi,China)
出处 《隧道建设(中英文)》 CSCD 北大核心 2023年第7期1118-1126,共9页 Tunnel Construction
基金 创新研究专项基金(2022C61540)。
关键词 隧道 影像拼接 SIFT RANSAC 整体平差法 tunnel image stitching scale-invariant feature transform random sample consensus integral adjustment
  • 相关文献

参考文献10

二级参考文献66

  • 1王密,潘俊.一种数字航空影像的匀光方法[J].中国图象图形学报(A辑),2004,9(6):744-748. 被引量:69
  • 2杨文久,刘心季.不同时相遥感图像的镶嵌技术[J].国土资源遥感,1994,6(2):46-51. 被引量:14
  • 3李德仁,王密,潘俊.光学遥感影像的自动匀光处理及应用[J].武汉大学学报(信息科学版),2006,31(9):753-756. 被引量:86
  • 4孙明伟.正射影像全自动快速制作关键技术研究[D].武汉:武汉大学,2008:21-22.
  • 5朱述龙 张占睦.遥感图像获取与分析[M].北京:科学出版社,2000.4.
  • 6ERDAS IMAGINE 8. 5 Procedures [EB/OL]. http://support.erdas, com, 2003-8-05.
  • 7Gonzalez R C.数字图像处理(第2版)[M].北京:电子工业出版社,2002.
  • 8Pilu M, Pollard S. A light-weight text image processing method for handheld embedded cameras[A]. In: Proc. British Machine Vision Conference [C], Cardiff University, UK, 2002: 547-556.
  • 9Everaerts J.The Use of Unmanned Aerial Vehicles (UAVs) forRemote Sensing and Mapping[J].The International Archives ofthe Photogrammetry[J]. Remote Sensing and Spatial InformationSciences, 2008(37):1187-1192.
  • 10李明, 曹瀚, 刘良明, 等. 面向应急的无人机影像拼接方法研究[C]. 第一届全国高分辨率遥感数据处理与应用研讨会,西安,2011.

共引文献137

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部