期刊文献+

基于改进Faster-RCNN的生活垃圾分类研究

Domestic Waste Classification Based on Improved Faster-RCNN
在线阅读 下载PDF
导出
摘要 随着人口的增长,生活垃圾分类问题日益突出。文章提出了一种基于改进快速的区域卷积神经网络(Faster-Region Convolutional Neural Network,Faster-RCNN)的生活垃圾分类方法,将特征提取网络改为ResNet50网络,并在区域推荐网络(Region Proposal Network,RPN)中使用K-means聚类算法。结果表明,基于改进Faster-RCNN的网络模型的准确率达到94.5%,具有较高的准确率和较快的分类速度,可为解决生活垃圾分类提供一种有效的技术手段。 With the growth of population,the problem of household waste classification is becoming increasingly prominent.This article proposes a household waste classification method based on improved Faster-Region Convolutional Neural Network(Faster-RCNN),which changes the feature extraction network to ResNet50 network and uses K-means clustering algorithm in Region Proposal Network(RPN).The results show that the accuracy of the network model based on the improved Faster RCNN reaches 94.5%.This method has high accuracy and fast classification speed,providing an effective technical means for solving the problem of household waste classification.
作者 葛焰 刘心中 GE Yan;LIU Xinzhong(Fujian University of Technology,Fuzhou Fujian 350000,China)
机构地区 福建理工大学
出处 《信息与电脑》 2023年第8期95-98,共4页 Information & Computer
关键词 生活垃圾分类 快速的区域卷积神经网络(Faster-RCNN) K-MEANS聚类 深度学习 household waste classification Faster-Region Convolutional Neural Network(Faster-RCNN) K-means clustering deep learning
  • 相关文献

参考文献7

二级参考文献111

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010.
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324.
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303.
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429.
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009.
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970.
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178.
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001.
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178.
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531.

共引文献273

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部