期刊文献+

融合时空注意力机制的P波到时拾取网络 被引量:3

Seismic P-Wave First-Arrival Picking Model Based on Spatiotemporal Attention Mechanism
在线阅读 下载PDF
导出
摘要 针对现有地震到时拾取算法精度较低、鲁棒性较差等问题,设计了一种基于深度学习的地震P波到时拾取网络,该网络为编解码结构,可实现地震波形序列的逐点预测。网络编码器对输入数据进行多尺度特征提取与融合,提高特征利用率;利用多尺度残差结构深度挖掘数据中隐藏特征信息,提升模型非线性拟合能力;在解码网络中加入时空注意力机制,提高网络对到时特征的感知能力;提出深层编码特征融合模块,在保证特征完整性的同时有效避免融合特征过程中出现的特征序列污染问题。实验结果表明,提出的网络在0.1s、0.2s、0.3s三个误差阈值下,拾取命中率分别为75.04%、94.6%、97.37%,平均绝对误差和均方误差为0.092s、0.036,相比现有传统方法与深度学习到时拾取方法,具有更高的P波到时拾取精度。 Aiming at the problems of low accuracy and poor robustness of the existing earthquake first-arrival picking algorithm,a seismic P-wave arrival picking network based on deep learning is designed.This network is encoder-decoder structure,which can identify seismic signal sequence point by point.The encoder uses multi-scale feature extractor for fea-ture extraction and fusion of input data to improve feature utilization ratio.The multi-scale residual structure is used to deeply mine the hidden feature information in the data to improve the nonlinear fitting ability of the model.Then,the spa-tiotemporal attention mechanism is added to the decoder to improve the network’s perception of the first-arrival features.Finally,a deep coding feature fusion module is proposed to effectively avoid the pollution of feature sequence while ensur-ing the integrity of features.The experimental results show that under the three error thresholds of 0.1 s,0.2 s and 0.3 s,the picking hit rate of the proposed network are 75.04%,94.6%and 97.37%,respectively,the mean absolute error and mean square error are 0.092 s and 0.036.Compared with the existing traditional and deep learning first-arrival picking methods,it has higher P-wave first-arrival picking accuracy.
作者 李宇 韩晓红 张玲 张海轩 李钢 LI Yu;HAN Xiaohong;ZHANG Ling;ZHANG Haixuan;LI Gang(College of Data Science,Taiyuan University of Technology,Taiyuan 030000,China;College of Software,Taiyuan University of Technology,Taiyuan 030000,China;College of Information and Computer,Taiyuan University of Technology,Taiyuan 030000,China)
出处 《计算机工程与应用》 CSCD 北大核心 2023年第6期113-124,共12页 Computer Engineering and Applications
基金 国家自然科学基金(61976150) 山西省自然科学基金(201901D111091) 山西省回国留学人员科研资助项目(HGKY2019024)。
关键词 震相到时拾取 深度学习 序列处理 时空注意力 特征融合 phase arrive picking deep learning sequence processing spatiotemporal attention feature fusion
  • 相关文献

参考文献12

二级参考文献83

共引文献287

同被引文献36

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部