期刊文献+

Multivariate Time Series Forecasting with Transfer Entropy Graph

原文传递
导出
摘要 Multivariate Time Series(MTS)forecasting is an essential problem in many fields.Accurate forecasting results can effectively help in making decisions.To date,many MTS forecasting methods have been proposed and widely applied.However,these methods assume that the predicted value of a single variable is affected by all other variables,ignoring the causal relationship among variables.To address the above issue,we propose a novel end-to-end deep learning model,termed graph neural network with neural Granger causality,namely CauGNN,in this paper.To characterize the causal information among variables,we introduce the neural Granger causality graph in our model.Each variable is regarded as a graph node,and each edge represents the casual relationship between variables.In addition,convolutional neural network filters with different perception scales are used for time series feature extraction,to generate the feature of each node.Finally,the graph neural network is adopted to tackle the forecasting problem of the graph structure generated by the MTS.Three benchmark datasets from the real world are used to evaluate the proposed CauGNN,and comprehensive experiments show that the proposed method achieves state-of-the-art results in the MTS forecasting task.
出处 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2023年第1期141-149,共9页 清华大学学报(自然科学版(英文版)
基金 supported in part by the National Natural Science Foundation of China (No.62002035) the Natural Science Foundation of Chongqing (No.cstc2020jcyj-bshX0034).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部