期刊文献+

基于Faster R-CNN的织物表面打印导电线路中微滴目标检测 被引量:7

Detection of droplets in circuit jet printed on fabric surface based on Faster R-CNN
在线阅读 下载PDF
导出
摘要 针对织物表面打印导电线路中传统的微滴目标检测通用性及智能化程度低的问题,使用深度学习模型实现了微滴形态的实时检测。通过对训练图片进行预处理,使用Labelimg工具标记不同形态的微滴灰度图像目标区域,生成相应的数据信息库,为后续的训练和测试提供数据集。利用深度学习目标检测模型训练标记好的数据集,得到最优检测模型。实验结果表明:相比于传统目标检测方法,深度学习检测模型对不同形态的微滴具有很好的适用性;相比于其他深度学习模型,Faster R-CNN模型的精度更高,对正常微滴和不良液滴检测的平均精度均值为84.89%。该研究为后续织物表面导电线路的精确成形提供了参考。 Due to the low versatility and intelligence of the traditional droplet target detection in the conductive circuit printed on the fabric surface, deep learning model was used to realize the real-time monitoring of droplet shape. By preprocessing the training images, the Labelimg tool was used to mark the target areas of the droplet grayscale images of different shapes, and the corresponding data information library was generated to provide data sets for subsequent training and testing. Using the labeled data set, the mainstream deep learning target detection models were trained separately to obtain the optimal detection model. The experimental results show that compared with traditional target detection methods, the deep learning detection model has good applicability to droplets of different shapes, and compared with other deep learning models, the Faster R-CNN model has higher accuracy, and the mean average precision(mAP) of normal and bad droplet detection is 84.89%. This research provides a reference for the subsequent precise formation of the circuit on the fabric surface.
作者 胥光申 徐晋 杨鹏程 肖渊 王兆辉 梁蒲佳 XU Guangshen;XU Jin;YANG Pengcheng;XIAO Yuan;WANG Zhaohui;LIANG Pujia(School of Mechanical and Electrical Engineering,Xi’an Polytechnic University,Xi’an 710048,China;Xi’an Key Laboratory of Modern Intelligent Textile Equipment,Xi’an 710600,China)
出处 《纺织高校基础科学学报》 CAS 2023年第1期41-48,56,共9页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金(51475350) 西安市现代智能纺织装备重点实验室建设项目(2019220614SYS021CG043) 西安工程大学研究生创新基金项目(chx2021008)。
关键词 智能纺织品 喷射打印 图像处理 目标检测 深度学习 smart textiles jet printing image processing target detection deep learning
  • 相关文献

参考文献14

二级参考文献153

  • 1黄鹤,严灏景.智能纺织品[J].印染,2005,31(7):47-49. 被引量:13
  • 2魏大忠,张人佶,吴任东,周浩颖.压电驱动微滴喷射过程的数学模型[J].中国机械工程,2005,16(7):611-614. 被引量:19
  • 3侯庆华.白色复合导电纤维DDY-2的研制 第3报 导电织物及其抗静电性能[J].合成纤维,2005,34(11):43-45. 被引量:1
  • 4陆振乾,钱坤.利用分形理论求解织物渗透率[J].纺织学报,2006,27(2):17-19. 被引量:7
  • 5Cao W B, Miyamoto Y. Freeform fabrication of aluminum parts by direct deposition of molten aluminum [ J ]. Journal of Mate-rials Processing Technology, 2006,173 (2) :209 - 212.
  • 6Chun J H, Passow C H. Droplet-based manufacturing [ J ]. An- nals of the CIRP, 1993,42( 1 ) :235 -238.
  • 7Cheng S, et a/. A pneumatic droplet-on-demand generator[ J ]. Experiments in Fluids, 2003,34:755-762.
  • 8Fang M, Chandra S, Park C B. Experiments on remelting and solidification of molten metal droplets deposited in vertical col- umns [ J ]. Journal of Manufacturing Science and Engineer- ing, 2007,129:311 -319.
  • 9Kwon K S. Speed measurement of ink droplet by using edge de- tection techniques [ J ]. Measurement, 2009,42:44 - 50.
  • 10Hsing P C, Tankin R S. Measurement of droplet size, velocity, and temperature distributions in rayleigh flow [ J ]. Experiment in Fluids, 1996,22 (2) : 144 - 152.

共引文献135

同被引文献104

引证文献7

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部