期刊文献+

基于支持向量机的电网安全抽检数据分析方法

Analysis method of power grid security sampling data based on Support Vector Machine
在线阅读 下载PDF
导出
摘要 电网安全数据子集中缺少处理目标函数的松弛变量,导致抽检数据处理线程吞吐量过高,为此,提出支持向量机的电网安全抽检数据分析方法。根据支持向量机提取电网安全抽检数据特征,计算特征子集上的信息维度;利用该信息维度设计支持向量机数据分析函数,采用敏感函数训练损失的电网安全数据子集,处理目标函数松弛变量,构建电网安全抽检数据分析模型,完成电网安全抽检数据分析。实验结果表明,该方法的抽检数据处理线程吞吐量最高为6000条/s,说明电网安全抽检数据分析效果较好。 The lack of slack variables to process objective function in the power grid security data subset leads to the high throughput of the sampling data processing thread. Therefore, this paper proposes a power grid security sampling data analysis method based on Support Vector Machine. According to Support Vector Machine, the features of power grid security sampling data are extracted, and the information dimension on the feature subset is calculated. This information dimension is used to design the Support Vector Machine data analysis function, and the lost power grid security data subset is trained by the sensitive function. Besides, the slack variables of the objective function is processed to construct the power grid security sampling data analysis model, and the power grid security sampling data analysis is completed. The experiment results show that the maximum throughput of sampling data processing thread of this method is 6000/s, which shows that the effect of power grid security sampling data analysis is good.
作者 骆星智 赵钰 孙磊 宫杨非 LUO Xing-zhi;ZHAO Yu;SUN Lei;GONG Yang-fei(State Grid Anhui Electric Power Co.,Ltd.,Hefei 230041,China)
出处 《信息技术》 2023年第1期126-130,136,共6页 Information Technology
关键词 支持向量机 电网安全 抽检数据 敏感函数训练 数据挖掘 Support Vector Machine power grid security sampling data sensitivity function training data mining
  • 相关文献

参考文献11

二级参考文献114

共引文献90

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部