期刊文献+

考虑二元Copula统计量的晶圆制造叠加误差监测

Multivariate Coupled Statistics Monitoring of Wafer Manufacturing Overlay Errors Based on Copula
在线阅读 下载PDF
导出
摘要 目前,大多数晶圆制造研究集中在基于离散数据的缺陷模式识别上,而芯片的光刻制造是连续叠加过程,因此基于连续数据的晶片重叠误差监测具有挑战性和必要性。在数据监测过程中充分考虑数据的可解释性,同时结合晶圆数据特性及其物理意义加入新的惩罚项,改进LTS-SPCA降维模型,提出了灵活度较高的稳健稀疏主成分分析技术;然后基于Copula的置换对称、反射对称两种性质,考虑晶圆的几何特征,建立了最佳多元耦合统计量,用于监测晶圆制造的叠加过程异常。所提方法监测异常数据的准确率可达91.75%,具有较高的工程应用价值。 At present,most of studies of wafer manufacturing focused on discrete data defect pattern recognition,while chip lithography manufacturing was a continuous stacking process,and wafer overlap error monitoring based on continuous data was challenging and necessary.The data interpretability was fully considered in the processes of data monitoring,and new penalty terms were added in combination with wafer data characteristics and physical significance.A robust and sparse principal component analysis technique with high flexibility was proposed on basis of the improved LTS-SPCA dimensionality reduction model.Considering the geometric characteristics of wafers,optimal multivariate coupled statistic based on Copula properties of reflection and permutation symmetry was established to monitor the stacking process anomalies of wafer manufacturing.The accuracy of proposed method may reach 91.75%,which has high engineering application values.
作者 郝澜宇 周笛 李艳婷 潘尔顺 HAO Lanyu;ZHOU Di;LI Yanting;PAN Ershun(School of Mechanical Engineering,Shanghai Jiao Tong University,Shanghai,200240)
出处 《中国机械工程》 EI CAS CSCD 北大核心 2023年第3期369-377,共9页 China Mechanical Engineering
基金 国家自然科学基金(72072114,52005327)。
关键词 异常监测 改进LTS-SPCA模型 Copula性质 晶圆制造 abnormal monitoring improved LTS-SPCA model Copula property wafer manufacturing
  • 相关文献

参考文献6

二级参考文献50

  • 1王亚雄,李建英.主成分分析法在多元质量控制中的应用[J].工业工程与管理,2005,10(3):121-125. 被引量:9
  • 2王岩,尹海丽,窦在祥.蒙特卡罗方法应用研究[J].青岛理工大学学报,2006,27(2):111-113. 被引量:26
  • 3喻天翔,宋笔锋,万方义,冯蕴雯.机械零件多失效模式相关可靠度算法研究[J].机械强度,2006,28(4):508-511. 被引量:29
  • 4韦艳华,张世英.多元Copula-GARCH模型及其在金融风险分析上的应用[J].数理统计与管理,2007,26(3):432-439. 被引量:72
  • 5Ditlevsen O. Narrow Reliability Bounds for Structural System[J]. Mechanics Based Design of Structures and Machines, 1979,7(4):453-472.
  • 6Yang Jingping, Cheng Shihong, Zhang Lihong. Bivariate Copula Decomposition in Terms of Comonotonicity, Countermonotonicity and Independence[J], Insurance : Mathematics and Economics, 2006,39: 267-284.
  • 7De Michele C, Salvadori G, Passoni G, et al. A Multivariate Model of Sea Storms Using Copulas [J]. Coastal Engineering, 2007,54 : 734-751.
  • 8Nelsen R B. An Introduction to Copulas[M] . New Yark:Springer, 2006.
  • 9Porteus E L. Investing in new parameter values in the discounted EOQ model[J]. Management Science, 1986,33 (1) : 39-48.
  • 10Djamaludin I,Wilson R J, Murthy D N P. Lot size and testing for items with uneertain quality[J]. Mathematical and Computer Modeling, 1995,22 : 35-44.

共引文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部