摘要
在碳达峰、碳中和的时代背景下,氢能等清洁绿色能源成为能源转型的关键,储氢技术作为氢能从生产到应用的中间桥梁而备受关注。笼型水合物是一种潜在的氢气存储材料,但储氢速率慢、储氢量低制约了水合储氢技术的工业化进程。因此,本文综述了近年来动力学强化水合储氢技术的研究进展,着重介绍了氢气水合物成核、生长动力学机理、提高驱动力、扩大气液接触面积以及改善扩散通道等动力学强化技术,并从储氢速率、储氢密度等方面总结了当前的动力学强化技术,以期促进相关研究的发展。本文指出未来相关工作应在以下几个方面展开:首先,深化氢气水合物的成核、生长和稳定机制研究;其次,寻求高效高驱动力的热力学促进剂,从根本上提高驱动力;最后,高效热力学促进剂与改善氢气水合物的扩散通道相结合,实现高储量和高速率的双重优化。
In the era background of carbon dioxide emission peak and carbon neutrality,hydrogen energy was the key to energy transformation as clean and green energy.Therefore,hydrogen storage technology as an intermediate bridge between the production and application of hydrogen energy has attracted much attention.Although clathrate hydrates are potential hydrogen storage materials,the slow hydrogen storage rates and low storage capacity hinder its industrialization.Consequently,this work discussed the progress of the kinetics enhancement technology of hydrogen storage in clathrate hydrates,and the kinetics mechanism of hydrogen hydrate nucleation and growth,including the kinetics enhancement technology of hydrogen hydrate(the driving force,the contact area of the gas-liquid interface,and the diffusion channel).Then,we summarized current kinetics enhancement technology from the aspects of hydrogen storage rates and density to support the development of related research.Notably,this paper emphasizes that corresponding works may be performed in the future.First,to deepen research on nucleation,growth,and the stability mechanism of hydrogen hydrate.Second,to seek high efficiency and high driving force thermodynamic promoters in improving driving forces fundamentally.Finally,to combine high-efficiency thermodynamic promoters and improved diffusion channels in achieving the double optimization of high hydrogen-storage rates and storage capacity.
作者
陈思远
王燕鸿
郎雪梅
樊栓狮
CHEN Siyuan;WANG Yanhong;LANG Xuemei;FAN Shuanshi(South China University of Technology;Guangdong Provincial Key Laboratory of Fuel Cell Technology,Guangzhou 510640,Guangdong,China;Guangdong Engineering Technology Research Center of Advanced Insulating Coating,Zhuhai 519175,Guangdong,China)
出处
《储能科学与技术》
CAS
CSCD
北大核心
2022年第12期3787-3799,共13页
Energy Storage Science and Technology
基金
国家自然科学基金项目(51876069)。
关键词
储氢
笼型水合物
动力学强化
储氢速率
储氢密度
hydrogen storage
clathrate hydrate
kinetics
hydrogen storage rate
hydrogen storage capacity