摘要
The sluggish reaction kinetics and poor structure stability of transition metal dichalcogenides(TMDs)-based anodes in potassium-ion batteries(KIBs)usually cause limited rate performance and rapid capacity decay,which seriously impede their application.Herein,we report a vacancy engineering strategy for preparing a class of Te-doped 1T'-ReSe_(2)anchored onto MXene(Te-ReSe_(2)/MXene)as an advanced anode for KIBs with high performance.By taking advantage of the synergistic effects of the defective Te-ReSe_(2)arrays with expanded interlayers and the elastic MXene nanosheets with self-autoadjustable function,the Te-ReSe_(2)/MXene superstructure exhibits boosted K^(+)ion storage performance,in terms of high reversible capacity(361.1 mA h g^(−1)at 0.1 A g^(−1)over 200 cycles),excellent rate capability(179.3 mA h g^(−1)at 20 A g^(−1)),ultra-long cycle life(202.8 mA h g^(−1)at 5 A g^(−1)over 2000 cycles),and steady operation in flexible full battery,presenting one of the best performances among the TMDs-based anodes reported thus far.The kinetics analysis and theoretical calculations further indicate that satisfactory pseudocapacitive property,high electronic conductivity and outstanding K^(+)ion adsorption/diffusion capability corroborate the accelerated reaction kinetics.Especially,structural characterizations clearly elaborate that the Te-ReSe_(2)/MXene undergoes reversible evolutions of an initial insertion process followed by a conversion reaction.
过渡金属二硫族化合物(TMDs)用作钾离子电池(KIBs)负极时存在反应动力学缓慢及结构稳定性不足等难题,导致其循环和倍率性能差,使得其应用严重受限.在本文中,我们将Te掺杂的1T′-ReSe_(2)负载在MXene上构建了高性能KIBs负极(Te-ReSe_(2)/MXene).该超结构利用缺陷化的Te-ReSe_(2)与自调节弹性MXene的协同效应,表现出高可逆容量(0.1 A g^(−1)电流密度下循环200圈后为361.1 mA h g^(−1)),优异的倍率性能(20 A g^(−1)电流密度下为179.3 mA h g^(−1))和超长的循环寿命(5 A g^(−1)电流密度下循环2000圈后为202.8 mA h g^(−1)),并能实现柔性全电池的稳定运行,是目前所有TMDs基负极展示的最好性能之一.动力学分析和理论计算表明,该材料具有出色的赝电容特性,高电导率和优异的K^(+)吸附/扩散能力,显著提升了其反应动力学.
作者
Jianwen Zhou
Yelong Zhang
Zheng Liu
Zhenping Qiu
Da Wang
Qingguang Zeng
Chao Yang
Kwun Nam Hui
Yong Yang
Zhangquan Peng
Shaojun Guo
周健文;张业龙;刘争;邱振平;汪达;曾庆光;杨超;许冠南;杨勇;彭章泉;郭少军(School of Applied Physics and Materials,Wuyi University,Jiangmen 529020,China;Laboratory of Advanced Spectro-Electrochemistry and Lithium-Ion Batteries,Dalian National Laboratory for Clean Energy,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian 116023,China;School of Materials Science and Engineering,Peking University,Beijing 100871,China;Joint Key Laboratory of the Ministry of Education,Institute of Applied Physics and Materials Engineering,University of Macao,Avenida da Universidade,Taipa,Macao SAR 999078,China;State Key Laboratory of Solidification Processing,Center of Advanced Lubrication and Seal Materials,Northwestern Polytechnical University,Xi’an 710072,China)
基金
the National Natural Science Foundation of China(22005223 and 21975187)
Guangdong Basic and Applied Basic Research Foundation(2019A1515012161)
the Special Innovational Project of Department of Education of Guangdong Province(2019KTSCX186 and 2017KCXTD031)
the Science Foundation for Young Teachers of Wuyi University(2019td01)
the Science Foundation for High-Level Talents of Wuyi University(2018RC50 and 2017RC23)
Wuyi University-Hong Kong-Macao Joint Research Project(2019WGALH10)
the Innovative Leading Talents of Jiangmen(Jiangren(2019)7)
the Science and Technology Projects of Jiangmen((2017)307,(2017)149,(2018)352)
the Research Fund of the State Key Laboratory of Solidification Processing(NPU),China(SKLSP202004)
Guangdong Key Building Discipline Research Capability Enhancement Funds(2021ZDJS093).