期刊文献+

一种基于深度学习的无人艇海上目标识别技术 被引量:6

A Target Identification Technique for Unmanned Surface Vessel Based on Deep Learning
在线阅读 下载PDF
导出
摘要 目前,我国正在大力发展海洋武器装备,其无人化研究得到广泛关注,其中海上无人艇智能化是研究热点。针对我军对海上大中型目标检测和高精度定位的需求,进行基于深度学习的海上无人艇目标识别技术设计。设计了多源、多体制协同感知架构,以解决设备智能计算任务重复与资源浪费和深度学习加速问题;进行多层次特征提取、分析、融合技术设计,确定单/多传感器特征选取对象;开展基于深度学习的多特征目标检测、识别技术设计,建立基于深度学习网络的多源多维联合检测、识别处理方法。实验验证结果表明,所设计的方法对可见光图像识别率达99.7%以上,具有良好的识别效果。 At present,China is vigorously developing marine weapons and equipment,and the research on unmanned weapons and equipment has received extensive attention.The intelligentization of unmanned surface vessels is a research hotspot.To meet the detection and high-precision positioning requirements of large and medium-sized targets,this paper focuses on the design of target identification technique for unmanned surface vessel based on deep learning.Firstly,the multi-source and multi-system collaborative sensing architecture design is used to solve the problems of equipment intelligent computing task duplication and resource waste as well as deep learning acceleration.Secondly,multi-level feature extraction,analysis and fusion technique is designed to determine the features that should be selected for single/multi-sensors.Finally,the selected features are used to design multi-feature target detection and identification methods based on deep learning,and a multi-source multi-dimensional joint detection and identification processing method based on deep learning networks is established.The experimental results show that the recognition rate exceeds 99.7%for visual images,indicating that this technique has good recognition effects.
作者 王亮 陈建华 李烨 WANG Liang;CHEN Jianhua;LI Ye(Unit 91054 of PLA,Beijing 102442,China)
机构地区 [
出处 《兵工学报》 EI CAS CSCD 北大核心 2022年第S02期13-19,共7页 Acta Armamentarii
关键词 无人艇 目标识别 特征提取 深度学习 unmanned surface vessel target identification feature extraction deep learning
  • 相关文献

参考文献12

二级参考文献104

共引文献415

同被引文献42

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部