期刊文献+

加乘性混合误差模型精度评定的SUT法 被引量:1

The SUT method for precision estimation of mixed additive and multiplicative random error model
在线阅读 下载PDF
导出
摘要 已有加乘性混合误差模型参数估计方法能达到二阶精度,但精度评定方法只能达到一阶精度,若通过传统泰勒级数展开近似函数法来获取参数估值的二阶精度信息,由于加乘性混合误差模型中参数估值与观测值为一个复杂的非线性关系,必然需要复杂的求导运算。针对该问题,本文使用一种无须求导、无须了解非线性函数构成的比例无迹变换(scaled unscented transformation,SUT)法来计算参数估值的二阶精度信息。通过算例分析表明,利用SUT法求解加乘性混合误差模型能够有效避免复杂的求导运算,所求得的参数估值及其协方差阵均能达到二阶精度,从而验证了本文方法的可行性和优势。 The existing parameter estimation method of mixed additive and multiplicative random error model can achieve second-order precision,but the precision estimation method can only achieve first-order precision.If the traditional Taylor series expansion approximate function method is used to obtain the second-order precision information of parameter estimations,it will inevitably require complicated derivation operation due to the complex nonlinear relationship between parameter estimations and observations in the mixed additive and multiplicative random error model.Aiming at this problem,this paper uses the scaled unscented transformation method,which does not require derivative operation and understand the composition of nonlinear function,to obtain the second-order precision information of parameter estimations.The results of experiments show that using the SUT method to solve the mixed additive and multiplicative random error model can effectively avoid complicated derivation operation,and the obtained parameter estimations and covariance matrix can both achieve second-order precision,thus verifies the feasibility and advantages of the proposed method in this paper.
作者 王乐洋 陈涛 WANG Leyang;CHEN Tao(Faculty of Geomatics,East China University of Technology,Nanchang 330013,China;Key Laboratory of Mine Environmental Monitoring and Improving around Poyang Lake,Ministry of Natural Resources,Nanchang 330013,China;School of Geodesy and Geomatics,Wuhan University,Wuhan 430079,China)
出处 《测绘学报》 EI CSCD 北大核心 2022年第11期2303-2316,共14页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(42174011,41874001) 东华理工大学研究生创新专项资金(DHYC-202020)。
关键词 加乘性混合误差模型 加权最小二乘 非线性函数 SUT法 精度评定 mixed additive and multiplicative random error model weighted least squares nonlinear function SUT method precision estimation
  • 相关文献

参考文献11

二级参考文献60

  • 1于晶涛.星载SAR干涉技术的理论与方法研究[J].测绘学报,2004,33(4):368-369. 被引量:4
  • 2王振杰,欧吉坤,柳林涛.一种解算病态问题的方法——两步解法[J].武汉大学学报(信息科学版),2005,30(9):821-824. 被引量:33
  • 3WANG Ding ZHANG Li WU Ying.Constrained total least squares algorithm for passive location based on bearing-only measurements[J].Science in China(Series F),2007,50(4):576-586. 被引量:27
  • 4Schaffrin B, Felus Y A. On the Multlvariate Total Least-squares Approach to Empirical Coordinate Transformations.. Three Algorithms[J]. Journal of Geodesy, 2008, 82 (6):373-383.
  • 5Schaffrin B, Wieser A. On Weighted Total Leastsquares Adjustment for Linear Regression[J]. Journal of Geodesy, 2008,82(7): 415-421.
  • 6朱良保.地球物理反演(讲义)[OL].http://mail.ustc.edu.cn/-xjx/dwfy_sg.pdf,2009.
  • 7Crowder M. On the Use of a Working Correlation Matrix in Using Generalised Linear Models for Re- peated Measnres[J]. Biometrika, 1995,82 : 407-410.
  • 8Desmond A F. Optimal Estimating Functions, Qua- si-Likelihood and Statistical Modeling [J]. J Star Plan Inference, 1997,60:77-123.
  • 9Heyde C C. Quasi Likelihood and Its Applications [M]. New York:Springer, 1997.
  • 10Kukusha A, Malenkoa A, Schneeweissb H. Opti reality of Quasi-Score in the Multivariate Mean-Va riance Model with an Application to the Zero-Inflat ed Poisson Model with Measurement Errors [J]. Statistics, 2010,44:381 396.

共引文献77

同被引文献31

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部