期刊文献+

二维热传导方程初始条件反问题的数值求解 被引量:2

NUMERICAL SOLUTION OF THE INITIAL CONDITION INVERSE PROBLEM FOR THE TWO-DIMENSIONAL HEAT CONDUCTION EQUATION
在线阅读 下载PDF
导出
摘要 本文研究了二维热传导方程的初始条件反问题,利用Crank-Nicolson-Galerkin有限元方法对二维热传导方程进行离散,给出了其正问题的求解方法.此基础上,提出了限制值域的GMRES的求解算法(RRGMRES).数值模拟结果表明本文方法可行且有效. In this paper,the inverse problem of initial conditions for two-dimensional heat conduction equation is studied.The two-dimensional heat conduction equation is discretized by using Crank-Nicolson-Galerkin finite element method,and the solution method of its forward problem is given.On the basis,the GMRES algorithm(RRGMRES)of limited range is proposed.Numerical simulation results show that the proposed method is feasible and effective.
作者 闵涛 韩莹莹 MIN Tao;HAN Ying-ying(School of Science,Xi'an University of Technology,Xi'an 710054,China)
出处 《数学杂志》 2022年第6期513-522,共10页 Journal of Mathematics
关键词 二维 热传导方程 Crank-Nicolson-Galerkin 有限元 限制值域 GMRES算法 two-dimensional heat conduction equation Crank-Nicolson-Galerkin finite element method restricted range GMRES algorithm
  • 相关文献

参考文献6

二级参考文献22

  • 1葛美宝,徐定华,王泽文,张文.一类抛物型方程反问题的数值解法[J].东华理工学院学报,2006,29(3):283-288. 被引量:7
  • 2Lattes R,Lions J L.The Method of Quasi-Reversibility,Applications to Partial Differential Equations[M].New York:Elsevier,1969.
  • 3Showalter R E.The final value problem for evolution equations[J].J Math Anal Appl,1974,47(5):563-572.
  • 4Ames K A,Gordon W C,Epperson J F.A comparison of regularizations for an ill-posed problem[J].Math Comput,1998,67(12):1451-1471.
  • 5Xiong Xiangtuan,Fu Chuli,Qian Zhi.Two numerical methods for solving a backward heat conduction problem[J].Math Comput,2006,179 (9):370-377.
  • 6Denisov A M.Element of the theory of inverse problem[M].Utrecht:VSP BV,1999.
  • 7Hasanov A,Mueller J L.An umerical method for backward parabolic with non-selfadjoint elliptic operators[J].Applied Numerical Mathematics,2001,37(13):55-58.
  • 8Elden L.Time discretization in the backward solution of parabolic equation[J].Math Comp,1982,39(11):53-68.
  • 9叶其孝 李正元.反应扩散方程引论[M].北京:科学出版社,1999..
  • 10SAAD Y,SCHULTZM H,GMRES.A generalized minimal residual algorithm for solving nonsymmetric linear systems[J].SIAM J Sci Comput,1986,35(7):856-869.

共引文献16

同被引文献10

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部