期刊文献+

水下鬼成像的研究进展 被引量:8

Research Progress on Underwater Ghost Imaging
原文传递
导出
摘要 水下成像技术在军事、海洋开发和工程应用中发挥着重要的作用。然而,传统成像方法在传播过程中会受到吸收、散射、湍流和复杂的光与物质相互作用效应的影响,进而难以获得清晰的水下图像。近年来,水下鬼成像逐渐成为研究热点,它采用无空间分辨能力的桶探测器,通过关联算法来获取目标的空间分布。与传统阵列成像相比,鬼成像具有灵敏度高、抗干扰和工作波长宽等特点,在弱光、特殊波段和提高成像距离等方面具有显著优势。综述了近年来水下鬼成像的研究进展,重点讨论了其发展历程、光路结构和关键技术,分析了影响水下鬼成像质量的因素和提升方法,并对水下鬼成像的未来应用方向进行了展望。 Underwater imaging technology plays an important role in military,marine development and engineering applications.However,clear underwater images can hardly be obtained by traditional imaging methods due to the influence of absorption,scattering,turbulence,and complex interaction between light and matter in the propagation process.In recent years,underwater ghost imaging has gradually become a research hotspot.It uses a bucket detector without spatial resolution to obtain the spatial distribution of targets by the correlation algorithm.Compared with traditional array imaging,ghost imaging has the characteristics of high sensitivity,anti-interference and wide working wavelength,and it has prominent advantages in low light,special bands and increasing the detection distance of the imaging system.This paper reviews the research progress of underwater ghost imaging in recent years,focuses on its development process,optical path structure and key technologies,analyzes the factors affecting the quality of underwater ghost imaging and the improvement methods,and predicts the application directions of underwater ghost imaging.
作者 杨莫愁 吴仪 冯国英 Yang Mochou;Wu Yi;Feng Guoying(Institute of Laser&Micro/Nano Engineering,College of Electronics and Information Engineering,Sichuan University,Chengdu 610065,Sichuan,China)
出处 《光学学报》 EI CAS CSCD 北大核心 2022年第17期46-65,共20页 Acta Optica Sinica
基金 国家自然科学基金(U1730141) 等离子体物理重点实验室基金(6142A04200210)。
关键词 海洋光学 鬼成像 水下成像 单像素成像 压缩感知 深度学习 oceanic optics ghost imaging underwater imaging single-pixel imaging compressed sensing deep learning
  • 相关文献

参考文献12

二级参考文献78

  • 1黄有为,金伟其,王霞,曹峰梅,王岭雪.凝视型水下激光成像后向散射光理论模型研究[J].光学学报,2007,27(7):1191-1197. 被引量:18
  • 2Arst H. Optical properties and remote sensing of multicomponental water bodies[M]. Chichester, UK, Praxis Publishing, 2003.
  • 3McDonald T E. Range gated imaging experiment using gated intensifiers[A]. Proc. of SPIE[C]. 1999,3642 : 142-148.
  • 4Tulldahl H M,Andersson P,Olsson A,et al. Experimental evaluation of underwater range-gated viewing in natural waters[A]. Proc. of SPIE[C]. 2006,6395: 639506-1-8.
  • 5Jens Busck. Underwater 3-D optical imaging with a gated viewing laser radar[J]. Optical Engineering, November, 2005,44 (11) :1-7.
  • 6Francois Miralles, Julien Beaudry, et al. Laser scanning system for inspecting large underwater hdroelectric structures [J]. Journal of Electronic Imaging,2010, 19(2) : 1-14.
  • 7Takhar D,Laska J N,Wakin M B,et al. A new compressive imaging camera architecture using optical-domain compression [EB/OL]. http://dsp. rice. edu/sites/dsp. rice. edu/fiies/cs/ cscam, 2008.
  • 8Duarte M F,Davenport M A, Takhar D,et al. Single-pixel imaging via compressive sampling [J]. Signal Processing Magazine,IEEE,2008,25(2) :83-91.
  • 9Candes E J. Compressive sampling[A]. Proc. of International Congress of Mathematics[C]. 2006,3 : 1433-1452.
  • 10Donoho D L. Compressed sensing[J]. IEEE Trans. Information Theory, 2006,52(4):1289-1306.

共引文献74

同被引文献44

引证文献8

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部