期刊文献+

实验岩石学发展现状与趋势 被引量:2

Experimental Petrology: Status Quo and Prospect
原文传递
导出
摘要 实验岩石学通过高温高压实验来模拟地球内部状态,正演研究矿物、岩石及其组分的物理化学行为,与天然矿物和岩石样品反演研究相互补充.从20世纪初美国卡内基研究所建立地球物理实验室算起,实验岩石学已经历了100多年的发展,在认识地球内部状态和过程以及矿物和岩石成因方面发挥了重要作用.我国实验岩石学研究开展约50年,进入21世纪以来在实验平台和创新性研究成果方面取得了显著进步.在学科发展趋势方面,实验岩石学表现出以下6方面的特点:(1)新的高温高压实验技术不断涌现;(2)实验与分析测试技术高度融合;(3)实验模拟与计算模拟相结合;(4)从热力学平衡扩展到动力学研究;(5)从干体系扩展到对挥发分和流体的深入研究;(6)应用场景从固体地球扩展到类地行星.通过进一步开发或改进高温高压实验技术,加强与分析测试技术以及计算技术的结合,实验岩石学有望在破解地球内部流体的性质和作用、地幔演化和岩浆分异、变质反应速率和机制、类地行星形成与演化等重要科学问题方面作出关键贡献. Through simulating the high pressure and high temperature conditions in Earth’s interior, experimental petrology investigates the physicochemical behavior of minerals, rocks and the components they contain, which complements“inverse problem”study using natural samples. Since the foundation of the Geophysical Laboratory of the Carnegie institution in the early20th century, the development of experimental petrology has been taking place for more than 100 years. Experimental petrology has played a crucial role in advancing our knowledge about the conditions and processes in Earth’s interior and the genesis of minerals and rocks. In China, experimental petrology has developed for more than five decades, and significant progress has been made in the 21th century with respect to laboratory building and scientific research. We highlight the following characteristics in the development of experimental petrology as a discipline:(1) emergence of novel high temperature and high pressure experimental techniques;(2) integration of experimental and analytical techniques;(3) combination of experimental simulation and computational simulation;(4) expansion from thermodynamic equilibrium to kinetics;(5) expansion from dry systems to volatiles-bearing systems including fluids;(6) expansion from the Earth to other terrestrial planets. Through further development in experimental techniques and more intimate combination with analytical and computational methods, experimental petrology is expected to make important contributions in resolving important scientific problems, such as the properties and effects of geofluids, mantle evolution and magma differentiation, rates and mechanisms of metamorphic reactions, and the formation and evolution of terrestrial planets.
作者 倪怀玮 王沁霞 王春光 张艳飞 Ni Huaiwei;Wang Qingxia;Wang Chunguang;Zhang Yanfei(CAS Key Laboratory of Crust-Mantle Materials and Environments,School of Earth and Space Sciences,University of Science and Technology of China,Hefei 230026,China;CAS Center for Excellence in Comparative Planetology,Hefei 230026,China;College of Earth Sciences,Jilin University,Changchun 130061,China;State Key Laboratory of Geological Processes and Mineral Resources,China University of Geosciences,Wuhan 430074,China)
出处 《地球科学》 EI CAS CSCD 北大核心 2022年第8期2691-2700,共10页 Earth Science
基金 国家自然科学基金项目(Nos.41825004,41721002)。
关键词 实验岩石学 高温 高压 原位测量 experimental petrology high temperature high pressure in situ measurement
  • 相关文献

参考文献2

二级参考文献34

  • 1汪方跃,高山,牛宝贵,张宏.河北承德盆地114Ma大北沟组玄武岩地球化学及其对华北克拉通岩石圈地幔减薄作用的制约[J].地学前缘,2007,14(2):98-108. 被引量:11
  • 2ZHOU Wenge1, XIE Hongsen1, LIU Yonggang1, ZHENG Xiaogang1, ZHAO Zhidan2 & ZHOU Hui3 1. Laboratory of Material in the Earth’s Interior, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China,2. Department of Geology, China University of Geosciences, Beijing 100083, China,3. Department of Geology, Peking University, Beijing 100871, China.Dehydration melting of solid amphibolite at 2.0 GPa: Effects of time and temperature[J].Science China Earth Sciences,2005,48(8):1120-1133. 被引量:17
  • 3吴福元,李献华,杨进辉,郑永飞.花岗岩成因研究的若干问题[J].岩石学报,2007,23(6):1217-1238. 被引量:1121
  • 4Glenn A. Gaetani,Adam J. R. Kent,Timothy L. Grove,Ian D. Hutcheon,Edward M. Stolper. Mineral/melt partitioning of trace elements during hydrous peridotite partial melting[J] 2003,Contributions to Mineralogy and Petrology(4):391~405
  • 5John R. Sowerby,Hans Keppler. The effect of fluorine, boron and excess sodium on the critical curve in the albite–H2O system[J] 2002,Contributions to Mineralogy and Petrology(1):32~37
  • 6R. Stalder,P. Ulmer,A. Thompson,D. Günther. High pressure fluids in the system MgO–SiO2–H2O under upper mantle conditions[J] 2001,Contributions to Mineralogy and Petrology(5):607~618
  • 7R. Thomas,J. D. Webster,W. Heinrich. Melt inclusions in pegmatite quartz: complete miscibility between silicate melts and hydrous fluids at low pressure[J] 2000,Contributions to Mineralogy and Petrology(4):394~401
  • 8Glenn A. Gaetani,Timothy L. Grove. The influence of water on melting of mantle peridotite[J] 1998,Contributions to Mineralogy and Petrology(4):323~346
  • 9John A. Dalton,Dean C. Presnall. Carbonatitic melts along the solidus of model lherzolite in the system CaO-MgO-Al2O3-SiO2-CO2 from 3 to 7 GPa[J] 1998,Contributions to Mineralogy and Petrology(2-3):123~135
  • 10Cuneyt Sen,Todd Dunn. Dehydration melting of a basaltic composition amphibolite at 1.5 and 2.0 GPa: implications for the origin of adakites[J] 1994,Contributions to Mineralogy and Petrology(4):394~409

共引文献14

同被引文献21

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部