期刊文献+

基于特征融合注意网络的图像超分辨率重建 被引量:4

Feature Fusion Attention Network for Image Super-resolution
在线阅读 下载PDF
导出
摘要 近年来,基于深度卷积神经网络的单图像超分辨率重建,取得了显著的进展,但是,仍然存在诸如特征利用率低、网络参数量大和重建图像细节纹理模糊等问题.我们提出了基于特征融合注意网络的单图像超分辨率方法,网络模型主要包括特征融合子网络和特征注意子网络.特征融合子网络可以更好地融合不同深度的特征信息,以及增加跨通道的学习能力;特征注意子网络则着重关注高频信息,以增强边缘和纹理.实验结果表明:无论是主观视觉效果,还是客观度量,我们方法的超分辨率性能明显优于其他代表性的方法. In recent years,single-image super-resolution(SISR)reconstruction based on deep convolutional neural networks has made significant progress,but there are still problems such as low feature utilization,large number of network parameters and blurred texture of the reconstructed image.We propose a new SISR network based on feature fusion attention mechanism,which mainly consists of a feature fusion sub-network and a feature attention subnetwork.The feature fusion sub-network can better fuse feature information of different depths and increase the cross-channel learning ability;the feature attention sub-network focuses on high frequency information to enhance edges and textures.Experimental results demonstrate that the super-resolution performance of our method is significantly better than those of other representative methods in both subjective vision quality and objective metrics.
作者 周登文 马路遥 田金月 孙秀秀 ZHOU Deng-Wen;MA Lu-Yao;TIAN Jin-Yue;SUN Xiu-Xiu(School of Control and Computer Engineering,North China Electric Power University,Beijing 102206)
出处 《自动化学报》 EI CAS CSCD 北大核心 2022年第9期2233-2241,共9页 Acta Automatica Sinica
关键词 单图像超分辨率 卷积神经网络 特征融合 注意网络 Single image super-resolution convolution neural network feature fusion attention mechanism
  • 相关文献

参考文献2

二级参考文献6

共引文献24

同被引文献53

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部