期刊文献+

面向空间引力波探测的低噪声激光器研究进展(特邀) 被引量:6

Research Progress on Low-noise Laser for Space-based Gravitational Wave Detector (Invited)
在线阅读 下载PDF
导出
摘要 低噪声激光器是空间激光干涉仪引力波探测器的核心组件之一,激光器的输出功率、强度噪声、频率噪声等性能直接影响空间引力波探测器的灵敏度。空间引力波探测器对激光器的结构设计、噪声水平等提出了严格的要求。本文介绍了空间引力波探测器的目标和对激光器的要求,分析了激光器噪声性能对探测器灵敏度的影响,梳理了国内外典型探测任务中低噪声激光器研究进展,比较了不同激光器的噪声性能。最后,阐述了强度噪声抑制和频率噪声抑制的原理和进展,并对国内空间引力波探测用的低噪声激光器的研究进行了展望。 Gravitational Waves(GWs)are ripples of space-time that propagate across the universe at the speed of light. GWs detection is one of the most important frontiers of physics today. Ground-based laser interferometer gravitational wave detectors, such as LIGO, Virgo and KAGRA, have successfully confirmed the existence of GWs. GWs have become a new window for a human to observe the universe.Due to the influence of ground vibration noise,terrestrial gravity gradient noise and other factors,groundbased detectors are not sensitive to GWs below 1 Hz. Space-based detectors are free from such noises and can be made very large,thereby expanding the frequency range downwards to 10-4Hz,where exciting GW sources are waiting to be explored. Space-based GW detectors are expected to bring even more information about the universe through low-frequency GWs. A highly stable and long-lifetime laser system is a key component of the space-based GW detector,and the output power,intensity noise,frequency noise and other properties of the laser directly affect the sensitivity of the space-based GW detector. Thus,space-based GW detectors put forward much higher and stricter requirements for the laser. After widely experimental and industrial surveys,the baseline architecture for the laser for space-based GW detector consists of a low-power,low-noise master oscillator followed by a power amplifier with 2~10 W continuous-wave output. So,lasers consisting of a Master Oscillator and a Power Amplifier(MOPA)have been identified as the most-promising architecture for the space-based GW detector. In this review,we focused on the research progress of low-noise MOPA lasers in LISA,TianQin and Taiji missions. As in other applications of precision interferometry,1064 nm was chosen as the laser wavelength,due to the availability of high-quality bulk optics and the traditional low-noise Nd:YAG laser source represented by the Non-Planar Ring Oscillator(NPRO).The performance of different MOPA lasers for LISA injected by NPRO(m-NPRO),fiber laser and External Cavity Diode Laser(ECDL)were compared,and the mNPRO has been identified as the most-promising MO architecture for the LISA laser,and the baseline architecture consists of a low-power,low-noise m-NPRO followed by a diode-pumped Yb-fiber amplifier with ~2 W output. As for the Relative Intensity Noise(RIN), the m-NPRO meets the LISA requirement. As to the Chinese space-based GW detection projects,the research progress and spatial test results of lasers were elaborated. A DBR laser was designed for the TianQin-1 mission as the space laser in the laser interferometer,and was successfully verified in the TianQin-1 mission. The laser passed the environment performance verification under the aerospace standard. Meanwhile,a high stability laser source at 1064 nm for Taiji-1 satellite was reported. The key component of the laser source was a NonPlanar Ring Oscillator(NPRO)solid laser with linewidth of 260 Hz. The frequency noise and power noise of Laser source were greatly improved by applying precision driving current control and temperature control. Furthermore,around the requirements of the noise performance of lasers by space-based GW detectors,the principle and progress of intensity noise suppression and frequency noise suppression were described,and the main achievements of photoelectric feedback suppression technology for intensity noise suppression and PDH technology for frequency noise suppression were discussed respectively. We designed a laser system with the characteristics of narrow-linewidth,low-noise and polarization-maintaining. In our experiment setup, optoelectronic feedback suppression technology was used to suppress pump LD fluctuations using low-noise photodetectors and PID controller. In the frequency domain,the relative intensity noise is reduced at the level of 10-3Hz-1/2@1 mHz. Finally,the research on low noise lasers for space-based GW detection in China is prospected,and the development direction of low noise lasers is proposed.
作者 柳强 王在渊 王洁浩 李宇航 LIU Qiang;WANG Zaiyuan;WANG Jiehao;LI Yuhang(Department of Precision Instrument,Tsinghua University,Beijing 100084,China;Key Laboratory of Photonic Control Technology(Tsinghua University),Ministry of Education,Beijing 100084,China)
出处 《光子学报》 EI CAS CSCD 北大核心 2022年第7期216-234,共19页 Acta Photonica Sinica
基金 国家重点研发计划(No.2020YFC2200403)。
关键词 空间引力波探测 低噪声激光器 主控振荡功率放大 强度噪声抑制 频率噪声抑制 Space-based gravitational wave detector Low-noise Laser Master oscillator power amplifier Intensity noise suppression Frequency noise suppression
  • 相关文献

参考文献10

  • 1Min Ming,Yingxin Luo,Yu-Rong Liang,Jing-Yi Zhang,Hui-Zong Duan,Hao Yan,Yuan-Ze Jiang,Ling-Feng Lu,Qin Xiao,Zebing Zhou,Hsien-Chi Yeh.Ultraprecision intersatellite laser interferometry[J].International Journal of Extreme Manufacturing,2020,2(2):54-66. 被引量:5
  • 2王运永,朱宗宏.激光干涉仪引力波探测器的噪声和灵敏度[J].现代物理知识,2019,31(3):56-62. 被引量:4
  • 3段会宗,骆颖欣,张静怡,明珉,颜浩,朱凡,肖青,李萌,曹斌,李涛,王智钊,叶贤基.星间激光干涉测量技术[J].中山大学学报(自然科学版),2021,60(1):162-177. 被引量:5
  • 4王运永.第三代激光干涉仪引力波探测器[J].现代物理知识,2017,29(1):39-51. 被引量:4
  • 5刘志强,刘建丽,翟泽辉.激光稳频技术的研究及进展[J].量子光学学报,2018,24(2):228-236. 被引量:5
  • 6罗子人,张敏,靳刚,吴岳良,胡文瑞.中国空间引力波探测“太极计划”及“太极1号”在轨测试[J].深空探测学报,2020,7(1):3-10. 被引量:59
  • 7史伟,付士杰,盛泉,史朝督,张钧翔,张露,姚建铨.高性能单频光纤激光器研究进展:2017-2021(特邀)[J].红外与激光工程,2022,51(1):57-70. 被引量:8
  • 8罗子人,白姗,边星,陈葛瑞,董鹏,董玉辉,高伟,龚雪飞,贺建武,李洪银,李向前,李玉琼,刘河山,邵明学,宋同消,孙保三,唐文林,徐鹏,徐生年,杨然,靳刚.空间激光干涉引力波探测[J].力学进展,2013,43(4):415-447. 被引量:82
  • 9王运永,朱兴江,刘见,马宇波,朱宗宏,曹军威,都志辉,王小鸽,钱进,殷聪,刘忠有,BLAIR D,JU Li,ZHAO Chun-nong.激光干涉仪引力波探测器[J].天文学进展,2014,32(3):348-382. 被引量:17
  • 10罗俊,艾凌皓,艾艳丽,安子聪,白伟钢,白彦峥,包佳慧,曹斌,常文博,陈琛,陈厚源,崔凯,单莹,丁延卫,段会宗,范会敏,范磊,范纹彤,范霄,冯文凡,付新菊,付瑜亮,高晨光,郜青,高添泉,高鑫,高永新,龚云贵,谷德峰,辜凌云,郭兴,韩西达,何芸,胡一鸣,胡越新,胡展,黄顺佳,黄祥青,黄潇博,纪沐婕,蒋贇,焦磊,靳鸿鸣,康小明,匡双阳,雷卫华,李程远,李洪银,李珏,李康康,李萌,李明,黎明,李涛,李霄栋,李语强,李祝,李竹溪,黎樽彪,练军想,梁正程,林伟,凌晨,刘辉,刘佳恒,刘建平,刘力,刘祺,刘尚飞,刘胜前,刘帅,刘旭辉,刘雁冲,刘源,龙江,龙军,陆璐,罗成健,骆颖欣,马波,梅健伟,孟云鹤,明珉,牛翔,潘加键,庞爱平,彭慧生,屈少波,区子维,任亮亮,申荣锋,沈岩,石常富,宋佳凝,宋培义,索晓晨,谭柏轩,谭定银,檀庄斌,涂良成,王成,王铖锐,王凤彬,王海天,王继河,王凌风,王尚胜,王泰卜,汪旭东,王炎,汪洋,汪一萍,王智钊,魏东东,文明轩,吴庆文,吴勤勤,吴书朝,吴先霖,夏冰,夏旭,肖青,肖小圆,谢宁,徐家豪,颜浩,闫勇,杨铖,杨诚鋆,杨涓,杨列,杨山清,叶伯兵,叶贤基,叶小容,尹航,于达仁,袁慧敏,曾明,张才士,张德轩,张建东,张静怡,张锦绣,张居正,张开,张蜡宝,张立华,张涛,张鑫,张鑫2,张雪峰,赵宏超,赵玥,赵泽伟,周鸿博,周金灵,周立祥,周泽兵,朱凡,朱炬波,訾铁光,邹远川.天琴计划简介[J].中山大学学报(自然科学版),2021,60(1):1-19. 被引量:29

二级参考文献113

  • 1汤克云,康飞,王运永,徐军,张杨,郭有光.爱因斯坦引力波探测:中国在行动[J].科学中国人,2004(6):32-33. 被引量:2
  • 2李健,吴令安.相位调制锁定光学谐振腔[J].光学学报,1995,15(12):1641-1645. 被引量:13
  • 3李利亮, 董丰, 王海燕. 2011. Drag-Free 技术在卫星工程中的应用. 飞行控制与光电探测, 4: 39-43.
  • 4Einstein A. Sitzungsberichte der Physikalisch-mathematischen Klasse. Berlin: Preuss. Akad. Wiss., 1916: 688.
  • 5Einstein A. Sitzungsberichte der PhysikMisch-muthematischen Klasse. Berlin: Preuss. Akad. Wiss., 1918: 154.
  • 6Schutz B F. Class. Quant. Gray, 1999, 16:A131.
  • 7Marx J, Danzmann K, Hough J, et al. http://arxiv.org/abs/l111.5825, 2014.
  • 8Weber J. Phys. Rev, 1960, 117:306.
  • 9Hulse R A, Taylor J H. ApJ, 1975, 195:L51.
  • 10Taylor J H, Weisberg J M. ApJ, 1982, 253:908.

共引文献163

同被引文献42

引证文献6

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部