期刊文献+

Interface engineering of FeCo LDH@NiCoP nanowire heterostructures for highly efficient and stable overall water splitting 被引量:2

原文传递
导出
摘要 Developing efficient and inexpensive OER electrocatalysts is a challenge for overall water splitting.Herein,the heterostructured Fe Co LDH@NiCoP/NF nanowire arrays with high performance were rationally designed and prepared using an interface engineering strategy.Benefitting from the special heterostructure between Fe Co LDH and Ni Co P,the as-synthesized Fe Co LDH@Ni Co P/NF electrocatalyst exhibits outstanding OER performance with an exceptionally low overpotential of 206 mV to achieve 20 mA/cm^(2)current density in an alkaline electrolyte.Importantly,a cell constructed using the FeCo LDH@NiCoP/NF electrocatalyst as cathode and anode just needs a voltage of 1.48 V at 10 mA/cm^(2),and shows excellent stability over 80 h.Experimental and theoretical results verified that the introduction of Ni Co P efficiently regulates the electronic structure of Fe Co LDH,which tremendously boosts the conductivity and intrinsic catalytic activity of FeCo LDH@NiCoP/NF electrocatalyst.The present work provides guidance for the preparation of other efficient and cheap electrocatalytic materials.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第8期4003-4007,共5页 中国化学快报(英文版)
基金 the financial supports from Natural Science Foundation of China(Nos.91741105,22006120) Program for Innovation Team Building at Institutions of Higher Education in Chongqing(No.CXTDX201601011)。
  • 相关文献

同被引文献14

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部