期刊文献+

磁流变变间隙动压平坦化加工的工艺及机理 被引量:1

Process and mechanism of magnetorheological variable gap dynamic pressure planarization finishing
在线阅读 下载PDF
导出
摘要 为提高光电晶片的磁流变抛光效率并实现其超光滑平坦化加工,提出其磁流变变间隙动压平坦化加工方法,研究不同变间隙条件下蓝宝石晶片的材料去除率和表面粗糙度随加工时间的变化,并分析磁流变变间隙动压平坦化加工机理。结果表明:通过蓝宝石晶片对磁流变抛光液施加轴向低频挤压振动,其抛光压力动态变化且磁流变液产生挤压强化效应,使抛光效率与抛光效果显著提升。在工件下压速度为1.0 mm/s,拉升速度为3.5 mm/s,挤压振动幅值为1 mm条件下磁流变变间隙动压平坦化抛光120 min后,蓝宝石晶片的表面粗糙度Ra由6.22 nm下降为0.31 nm,材料去除率为5.52 nm/min,相较于恒定间隙磁流变抛光,其表面粗糙度降低66%,材料去除率提高55%。改变变间隙运动速度可以调控磁流变液的流场特性,且合适的工件下压速度和工件拉升速度有利于提高工件的抛光效率和表面质量。 In order to improve the magnetorheological polishing efficiency of photoelectric wafer and realize its ultra smooth planarization,the magnetorheological variable gap dynamic pressure planarization method is proposed.The changes of material removal rate and surface roughness of sapphire wafer with processing time under different variable gap conditions are studied,and the magnetorheological variable gap dynamic pressure planarization finishing mechan-ism is analyzed.The results show that the axial low-frequency extrusion vibration is applied to the magnetorheological polishing fluid through the sapphire wafer,the polishing pressure changes dynamically,and the magnetorheological flu-id produces extrusion strengthening effect,which significantly improves the polishing efficiency and polishing effect.Under the conditions of workpiece pressing speed of 1.0 mm/s,lifting speed of 3.5 mm/s and extrusion vibration amp-litude of 1 mm,the surface roughness Ra of sapphire wafer decreased from 6.22 nm to 0.31 nm and the material removal rate was 5.52 nm/min.Compared with constant gap magnetorheological polishing,the surface roughness decreased by 66%and the material removal rate increased by 55%.Changing the moving speed of variable gap can regulate the flow field characteristics of magnetorheological fluid,and the appropriate workpiece pressing speed and workpiece lifting speed are conducive to improve the polishing efficiency and surface quality of workpiece.
作者 阎秋生 蔡志航 潘继生 黄蓓 曾自勤 YAN Qiusheng;CAI Zhihang;PAN Jisheng;HUANG Bei;ZENG Ziqin(School of Mechanical and Engineering,Guangdong University of Technology,Guangzhou 510006,China)
出处 《金刚石与磨料磨具工程》 CAS 北大核心 2022年第4期488-494,共7页 Diamond & Abrasives Engineering
基金 国家自然科学基金(U1801259) 广州市科技计划(201904010300) 广东省自然科学基金(2019A1515010720)。
关键词 磁流变抛光 变间隙动压 平坦化加工 表面粗糙度 材料去除率 magnetorheological polishing variable gap dynamic pressure planarization finishing surface roughness material removal rate
  • 相关文献

参考文献8

二级参考文献57

  • 1季士委,黄楠,万国江,王凯.316L不锈钢血管支架材料电化学抛光工艺研究[J].中国介入影像与治疗学,2006,3(3):217-220. 被引量:7
  • 2姜守振,徐现刚,李娟,陈秀芳,王英民,宁丽娜,胡小波,王继杨,蒋民华.SiC单晶生长及其晶片加工技术的进展[J].Journal of Semiconductors,2007,28(5):810-814. 被引量:17
  • 3杨力.现代光学制造工程[M].北京:科学出版社,2008.
  • 4Weiser M. Ion beam figuring for lithography optics[J]. Nu- clear Instruments and Methods in Physics Research, 2009, 267(8/9) : 1390-1393.
  • 5Jun Taniguchi, Iwao Miyamoto. Surface Roughness of Opti- cal Substrate Finished by Ion Beam Figuring[EB/OL]. www. sematech.org/ meeting/ archives, 2011- 10-10.
  • 6Fujiwara K, Pahlovy S A, Miyamoto I. Ar+ ion beam ma- chining of the carbon thin layer deposited on the Zerodur substrate for EUVL projection optics [J]. Microelectronic Engineering, 2011, 88(8): 2527-2529.
  • 7Canon Company. Canon Technology Highlights [EB/OL]. www.canon.com, 2011-10-10.
  • 8Frost F, Fechner R, Zeiberi B,et al. Large area smoothing of optical surfaces by low-energy ion beams[J]. Thin Solid Films, 2004, 459(1/2) : 100-105.
  • 9Kurashima Y, Miyachi S, Miyamoto I, et al. Evaluation of surface roughness of ULE substrates machined by Ar+ ion beam[J]. Microelectronic Engineering, 2008, 85(5/6) : 1193- 1196.
  • 10Frost F, Ziberi B, Schindler A, et al. Surface engineering with ion beams: From self-organized nanostructures to ultra- smooth surfaces [J]. Applied Physics A , 2008, 91 (4) : 551-559.

共引文献56

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部