期刊文献+

考虑轨迹分析的车辆异常行为辨识 被引量:1

Research on recognition of vehicle abnormal behavior considering trajectory analysis
在线阅读 下载PDF
导出
摘要 针对交通道路中车辆的异常行为辨识问题,提出了一种基于轨迹分析的车辆异常行为辨识方法。利用改进的Hausdorff距离计算轨迹的相似度矩阵,根据谱聚类算法学习轨迹的空间分布模式,利用最小平均距离提取运动模式的中心轨迹并根据轨迹的位移向量学习方向模式。在此基础上对新轨迹进行空间与方向模式混合匹配,通过匹配结果检测方向异常的车辆。与此同时,对每类运动模式进行速度特征提取,将95%的行驶的速度作为正常速度区间,5%的行驶的速度作为异常速度区间。通过数据集验证了该方法可以准确地识别出速度异常的车辆,具有一定的实际应用价值。 Aiming at the problem of vehicle abnormal behavior identification in traffic road,a vehicle abnormal behavior identification method based on trajectory analysis is proposed.Firstly,the improved Hausdorff distance is used to calculate the spatial distance similarity matrix of the trajectory.Then,the spatial distribution pattern of the trajectory is learned according to the spectral clustering algorithm.Finally,the center trajectory of the motion pattern is extracted by using the minimum average distance,and the direction pattern is learned according to the displacement vector of the trajectory.On this basis,the new trajectory is mixed with spatial and directional pattern matching,and the vehicles with abnormal direction are detected through the matching results.Meanwhile,the speed feature of the motion mode is extracted.The speed of 95%of the drivers is regarded as the normal speed range,and the speed of 5%of the drivers is regarded as the abnormal speed range.Through the data set verification,the method can accurately identify the abnormal speed of the vehicle,and has a certain practical application value.
作者 丁华 杨文杰 姜超 DING Hua;YANG Wenjie;JIANG Chao(School of Automotive and Traffic Engineering,Jiangsu University,Zhengjiang 212013,China)
出处 《重庆理工大学学报(自然科学)》 CAS 北大核心 2022年第7期62-69,共8页 Journal of Chongqing University of Technology:Natural Science
基金 国家重点研发计划项目(2019YFB1600500)。
关键词 交通工程 轨迹分析 异常行为检测 混合模式匹配 traffic engineering trajectory analysis abnormal behavior detection mixed pattern match
  • 相关文献

参考文献6

二级参考文献46

  • 1李勃,陈启美.基于监控视频的运动车辆行为分析算法[J].仪器仪表学报,2006,27(z3):2118-2120. 被引量:13
  • 2杨志勇,马红伟,陈小平.基于模糊逻辑的高速公路事件检测算法研究[J].重庆交通大学学报(自然科学版),2013,32(6):1247-1251. 被引量:7
  • 3Johnson N, Hogg D. Learning the distribution of object trajectories for event recognition[J]. Image and Vision Computing, 1996,14(8) :609-615.
  • 4Sumpter N, Bulpitt A patterns for predicting and Vision Computing, J. Learning spatio-temporal object behavior[J]. Image 2000,18(9) : 697-704.
  • 5Hu W, Xie D, Tan T, et al. Learning activity pat- terns using fuzzy self-organizing neural network[J]. IEEE Transactions on Systems, Man, and Cyber- netics, Part B: Cybernetics, 2004, 34 (3) : 1618- 1626.
  • 6Atev S, Masoud O, Papanikolopoulos N. Learning traffic patterns at intersections by spectral clustering of motion trajectories[-C~ ff In IEEE International Conference on Intelligent Robots and Systems, Bei- jing, 2006 : 4851-4856.
  • 7Bashir F I, Khokhar A A, Schonfeld D. Object traj- ectory-based activity "classification and recognition using hidden Markov models~J-]. IEEE Transac- tions on Image Processing, 2007,16(7)..1912-1919.
  • 8Hu W, Xiao X, Fu Z, et al. A system for learning statistical motion patterns[J]. IEEE Transactions ~n Pattern Analysis and Machine Intelligence, 2006, 28(9) : 1450-1464.
  • 9Hu W, Xie D, Fu Z, et al. Semantic-based surveil- lance video retrieval[J]. IEEE Transactions on Im- age Processing, 2007,16(4) .. 1168-1181.
  • 10Biliotti D, Antonini G, Thiran J P. Multi-layer hier- archical clustering of pedestrian trajectories for auto- matic counting of people in video sequences[C]//In Proceedings - IEEE Workshop on Motion and Video Computing, Breckenridge, Colorado,2007 : 50-57.

共引文献44

同被引文献11

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部