期刊文献+

基于高光谱成像技术的小白杏成熟度判别模型 被引量:7

Maturity Discrimination Model of Little White Apricot Based on Hyperspectral Imaging Technology
在线阅读 下载PDF
导出
摘要 为快速、准确检测小白杏的成熟度,该研究选择七成熟、八成熟、九成熟、十成熟的小白杏样本各120个,采用近红外高光谱成像系统采集样本的高光谱数据,进行去除噪声和剔除界外样本处理。然后使用均值中心化(mean centering,MC)、Savitzky-Golay卷积求导法(Savitzky-Golay derivative,S-G)、多元散射校正(multiplicative scatter correction,MSC)、标准正态变量变换(standard normal variate transformation,SNV)、归一化法5种方法分别对全波段和特征波段光谱进行预处理,采用光谱-理化值共生距离算法(sample set partitioning based on joint x-y distance,SPXY)、K-S法(Kennard-stone,K-S)、双向算法(Duplex)、交叉验证法、随机法将样本划分为校正集和验证集。最后用极限学习机(extreme learning machine,ELM)、支持向量机(support vector machine,SVM)、偏最小二乘法(partial least squares,PLS)、K最邻近法(K-nearest neighbor,KNN)、贝叶斯判别法建立不同的分类判别模型,比较各模型的识别率。结果表明,对小白杏成熟度定性判别模型,有以下最优组合:全波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN、全波段+S-G/MSC/归一化/SNV+随机法+贝叶斯、全波段+S-G+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN、全波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS、特征波段+MSC+SPXY/Duplex/K-S/交叉验证/随机法+ELM/PLS/SVM/KNN/贝叶斯、特征波段+归一化+SPXY/Duplex/K-S/交叉验证/随机法+PLS。 To achieve rapid and accurate identification of different maturity of the little white apricot,firstly,120 samples of the little white apricot with four mature stages were selected respectively,and the hyperspectral data of samples were collected by the near-infrared hyperspectral imaging system.Five different pre-processing methods(MC,S-G,MSC,SNV,Normalization)pre-processed the full-wave and characteristic bands after eliminating the noise and out-of-bounds samples.Then five different sample set division methods(SPXY,K-S,Duplex,Cross-Validation,Randomization)divided the samples into correction and validation sets.Finally,five different classification and discrimination models(ELM,SVM,PLS,KNN,Bayes)were established.We compared the accuracy of each model,and the best maturity discrimination models were obtained as follows.Full-wave band+MSC+SPXY/Duplex/K-S/Cross-Validation/Randomization+ELM/PLS/KNN/SVM;full-wave band+S-G/MSC/SNV/Normalization+Randomization+Bayes;full-wave band+S-G+SPXY/Duplex/K-S/Cross-Validation/Randomization+ELM/PLS/KNN/SVM;full-wave band+Normalization+SPXY/Duplex/K-S/Cross-Validation/Randomization+PLS;characteristic bands+MSC+SPXY/Duplex/K-S/Cross-Validation/Randomization+ELM/PLS/KNN/Bayes/SVM;characteristic bands+Normalization+SPXY/Duplex/K-S/Cross-Validation/Randomization+PLS.
作者 刘金秀 贺小伟 罗华平 徐嘉翊 楚合营 申丽丽 LIU Jin-xiu;HE Xiao-wei;LUO Hua-ping;XU Jia-yi;CHU He-ying;SHEN Li-li(College of Mechanical and Electrical Engineering,Tarim University,Alar 843300,Xinjiang,China;Modern Agricultural Engineering Key Laboratory at Universities of Education Department of Xinjiang Uygur Autonomous Region,Alar 843300,Xinjiang,China)
出处 《食品研究与开发》 CAS 北大核心 2022年第15期158-165,共8页 Food Research and Development
基金 国家自然科学基金项目(11964030、11464039) 塔里木大学校长基金青年项目(TDZKQN201810)。
关键词 高光谱 小白杏 成熟度 判别 模型 hyperspectral imaging little white apricot maturity discrimination model
  • 相关文献

参考文献4

二级参考文献76

  • 1张君萍,高疆生,李疆,何天明,张卫芳,徐林,樊国权.新疆杏与华北杏果实主要营养成分比较分析[J].新疆农业科学,2006,43(2):140-144. 被引量:52
  • 2辛松林,秦文,王艳,刘冬梅.乳酸链球菌素在生菜保鲜中的应用[J].中国食品添加剂,2007,18(2):174-176. 被引量:11
  • 3杨丹,赵海滨,龙哲.MATLAB图像处理实例详解[M].北京:清华大学出版社,2013.
  • 4刘春泉,宋江峰,李大婧,金邦荃.虫草素的提取纯化及测定方法研究进展[J].食品科学,2007,28(11):596-599. 被引量:28
  • 5Elmasry G, Kamruzzaman M, Sun D W, et al. Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: A review[J]. Critical Reviews in FoodScience and Nutrition, 2012, 52(11): 999-1023.
  • 6Wu D, Sun D W. Advanced applications of hypersepctral imaging technology for food quality and safety analysis and assessment: A review-Part II: Applications[J]. Innovative Food Science and Emerging Technologies, 2013, 19: 15-28.
  • 7Rajkumar P, Wang N, Elmasry G, et al. Studies on banana fruit quality and maturity stages using hypersepctral imaging[J]. Journal of Food Engineering, 2012, 108(1): 194-200.
  • 8Menesatti P, Zanella A, D\'Andrea S, et al. Supervised multivariate analysis of hyper-spectral NIR images to evaluate the starch index of Apples[J]. Food and Bioprocess Technology, 2009, 2(3): 308-314.
  • 9Wei X, Liu F, Qiu Z, et al. Ripeness classification of astirngent persimmon using hyperspectral imaging technique[J]. Food and Bioprocess Technology, 2014, 7(5): 1371-1380.
  • 10Polder G, Van der Heijden G. CHAPTER 12-Measuring ripening of tomatoes using imaging spectrometry[M]. New York: Academic Press, 2010: 369-402.

共引文献51

同被引文献135

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部