期刊文献+

面向制造领域人机物三元数据融合的本体自动化构建方法 被引量:4

Automatic ontology construction for human-cyber-physical data fusion in manufacturing domain
原文传递
导出
摘要 当前,智能制造面临的许多问题都具有不确定性和复杂性,单纯地利用专家经验和机理模型难以有效解决.鉴于此,面向跨层跨域的复杂制造系统网络化协同控制机制,提出一种基于本体的人机物三元数据融合方法,研究复杂制造环境下的人机物三元数据融合建模.在抽取三元组时,区别于传统的流水线式抽取方式,提出一种基于实体-关系联合抽取的模型ErBERT.该模型首先经过预训练模型BERT进行词序列化,经过最大池化、全连接和Softmax等操作后,完成实体识别和关系分类任务,得到抽取完毕的人机物三元组.将抽取好的三元组按照规则映射至OWL文件,最终存储在图数据库中,实现本体模型的构建.经实验验证,经过ErBERT抽取出的三元组有较好的准确率,能够达到通过本体融合人机物三元数据的目标,并为实现制造企业人机物三元协同决策与优化提供技术支撑. At present,many problems of intelligent manufacturing are uncertain and complex,which cannot be solved effectively by expert experience and mechanism models.Therefore,the human-cyber-physical data fusion modeling in complex manufacturing environments is studied,and the ontology is proposed as the approach of the human-cyber-physical data fusion.In the extraction of triplets,a model named ErBERT based on entity-relation joint extraction is proposed,which is different from the traditional pipeline extraction.After word serialization by the pre-training model BERT,the model completes entity recognition and relationship classification by max pooling,fully connection and Softmax,and obtains the extracted human-cyber-physical triplets.The extracted triplets are mapped to OWL files according to rules,and finally stored in the graph database to realize ontology construction.The experimental result shows that the triplets extracted by the ErBERT have good accuracy and achieve the goal of fusion of human-cyber-physical data through ontology,which provides theoretical method support for realizing the ternary collaborative decision-making and optimization of human-cyber-physical data.
作者 董津 王坚 王兆平 DONG Jin;WANG Jian;WANG Zhao-ping(College of Electronic and Information Engineering,Tongji University,Shanghai 201804,China)
出处 《控制与决策》 EI CSCD 北大核心 2022年第5期1251-1257,共7页 Control and Decision
基金 科技创新2030新一代人工智能重大课题项目(2018AAA0101800)。
关键词 人机物 制造领域 数据融合 本体 三元组抽取 human-cyber-physical data manufacturing data fusion ontology triplets extraction
  • 相关文献

参考文献2

二级参考文献18

  • 1Dnyanesh G R. An ontology based text mining system for knowledge discovery from the diagnosis data in the automotive domain[J]. Computers in Industry, 2013, 64(5): 565-580.
  • 2Cimiano P, Luker J, Nagel D, et al. Exploiting ontology lexica for generating naturallanguage texts from RDF data[EB/OL].[2014-07-30]. http)/www.aclweb.org/anthologyIW13-2102.
  • 3Huang X P, Du Y J, Ren Y Y. Research on automatic user on?tology construction[J]. Journal of Information and Computa- tional Science, 2012, 9(2): 285-292.
  • 4Subramaniyaswamy V. Automatic topic ontology construction using semantic relations from WordNet and Wikipedia[J]. International Journal of Intelligent Information Technologies, 2013,9(3):61-89.
  • 5Li J, Ding Y D, Shi Y Y, et al. Building a large annotation on?tology for movie video retrieval[EB/OL].[2014-08-01]. http)/www.aicit.orgljdctalpplI08.%20JDCTA2-390081pdj.
  • 6Xiao G Z, Wang X L. The text deduction and model realization of the lexical meanings in dictionaries based on "synset-lexeme anamorphosis" and "basic semantic elements and their struc?tures"[Cy/13th Chinese Lexical Semantics Workshop. Berlin: Springer-Verlag, 2013: 774-783.
  • 7Hu D. Primitive Structure of Mandarin in Natural Language Processing[M]. Guangzhou: World Publishing Corporation, 2014: 3-25(Ch).
  • 8Abbas J. Structures for Organizing Knowledge: Exploring Tax?Onomies, Ontologies, and Other Schemas[M]. New York: Neal-Schuman Publishers Inc, 2010: 5-20.
  • 9Noy N F, Hafner C D. The state of the art in ontology design: A survey and comparative review[J]. AI magazine, 1997, 18: 53-74.
  • 10Pazzaglia J R, Embury S M. Bottom-up integration of ontolo?gies in a database context[EB/OL].[2014-08-01]. http: / / sunsite. informatikrwth-aachen.delPublications/CEUR - WS/Vol -10/paper7ps.

共引文献39

同被引文献58

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部