期刊文献+

基于DE-LSTM模型的教育统计数据预测研究 被引量:4

Study on Prediction of Educational Statistical Data Based on DE-LSTM Model
在线阅读 下载PDF
导出
摘要 当前,教育大数据呈现数据量大和数据类型多样的特点,准确有效地对教育统计数据进行分析和预测,对教育部门相关政策的制定和社会的发展具有重要的参考价值。文中以某市每年的招生人数为数据基础,提出了DE-LSTM模型,该模型通过差分进化算法(DE)对长短期记忆神经网络(LSTM)中的隐含层节点和学习率进行优化,使所提模型具有较好的预测性能,并与现有的BP神经网络预测模型、LSTM神经网络预测模型进行了对比。实验结果表明,提出的DE-LSTM预测模型具有较高的预测精度。 At present,educational data presents the characteristics of large amount of data and diverse data types.Accurate and effective analysis and prediction of educational statistical data,which has important reference value for the formulation of relevant policies in education sector and social development.In this paper,DE-LSTM model is proposed,which takes the annual enrollment of a city as the data basis.The proposed model uses differential evolution algorithm to optimize the hidden layer nodes and lear-ning rate in the long-term and short-term memory neural network and has the better prediction performance in compared with the LSTM and BP models.Furthermore,effectiveness of the proposed DE-LSTM model is verified by a large number of simulation experiments.
作者 刘宝宝 杨菁菁 陶露 王贺应 LIU Bao-bao;YANG Jing-jing;TAO Lu;WANG He-ying(School of Computer Science,Xi'an Engineering University,Xi'an 710000,China)
出处 《计算机科学》 CSCD 北大核心 2022年第S01期261-266,共6页 Computer Science
基金 陕西省教育厅信息保障专项科学研究计划项目(20JX004) 陕西省自然科学基础研究计划一般项目(面上)(2020JM-574)。
关键词 教育统计数据 时间序列预测 BP神经网络 长短时期记忆网络 差分进化算法 Education Statistics Time series prediction BP neural network Long and short term memory network Differential evolution algorithm
  • 相关文献

参考文献16

二级参考文献161

  • 1谭涛亮,张尧.基于遗传禁忌混合算法的电力系统无功优化[J].电网技术,2004,28(11):57-61. 被引量:53
  • 2鲍培明.基于BP网络的模糊Petri网的学习能力[J].计算机学报,2004,27(5):695-702. 被引量:87
  • 3杜庆东,刘杰,赵海.一种基于混合建模的模块化神经网络控制方法[J].计算机工程与应用,2006,42(11):215-217. 被引量:1
  • 4贾东立,张家树.基于混沌变异的小生境粒子群算法[J].控制与决策,2007,22(1):117-120. 被引量:50
  • 5Zhenyu Yang,Ke Tang,Xin Yao.Self-adaptive differential evolution with neighborhood search. IEEE World Congress on Computational Intelligence . 2008
  • 6Qin, A.K.,Huang, V.L.,Suganthan, P.N.Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Transactions on Evolutionary Computation . 2009
  • 7Holland JH.Adaptation in natural and artificial systems. . 1975
  • 8Qin A K,Suganthan P N.Self-adaptive differenti-al evolution algorithm for numerical optimization. The 2005 IEEE Congress on Evolutionary Compu-tation(CEC2005) . 2005
  • 9Bayraktar Z,Komurcu M,Werner D H. Wind Driven Optimiza- tion (WDO) :A novel nature-inspired optimization algorithm and its application to eleetromagneties[C]//2010 IEEE Antennas and Propagation Society International Symposium (APSURSI). IEEE,2010:1-4.
  • 10Bayraktar Z, Komurcu M, Bossard J A, et al. The wind driven optimization technique and its application in electromagnetics [J]. IEEE Transactions on Antennas and Propagation, 2013,61 (5) : 2745-2757.

共引文献114

同被引文献46

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部