期刊文献+

AN AVERAGING PRINCIPLE FOR STOCHASTIC DIFFERENTIAL DELAY EQUATIONS DRIVEN BY TIME-CHANGED LéVY NOISE 被引量:1

在线阅读 下载PDF
导出
摘要 In this paper,we aim to derive an averaging principle for stochastic differential equations driven by time-changed Lévy noise with variable delays.Under certain assumptions,we show that the solutions of stochastic differential equations with time-changed Lévy noise can be approximated by solutions of the associated averaged stochastic differential equations in mean square convergence and in convergence in probability,respectively.The convergence order is also estimated in terms of noise intensity.Finally,an example with numerical simulation is given to illustrate the theoretical result.
作者 Guangjun SHEN Wentao XU Jiang-Lun WU 申广君;徐文涛;吴奖伦(Department of Mathematics,Anhui Normal University,Wuhu 241000,China;Department of Mathematics,Computational Foundry Swansea University,Swansea,SA18EN,UK)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2022年第2期540-550,共11页 数学物理学报(B辑英文版)
基金 supported by the National NaturalScience Foundation of China(12071003,11901005) the Natural Science Foundation of Anhui Province(2008085QA20)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部