期刊文献+

剪切波变换下的侧扫声呐图像降噪方法 被引量:2

Side-scan sonar image denoising method under shearlet transform
在线阅读 下载PDF
导出
摘要 针对侧扫声呐图像对比度低、噪声强度大特点导致的部分传统滤波方法降噪能力的不足,提出一种基于剪切波变换的侧扫声呐图像降噪方法。首先对侧扫声呐图像进行剪切波变换,在考虑噪声水平的基础上,对剪切系数进行阈值处理,再将修正后的系数进行剪切波逆变换,重构侧扫声呐图像,实现了侧扫声呐图像的降噪。实验结果表明,该方法相比于维纳滤波、小波滤波和非局部均值滤波等常用降噪方法,可以获取更好的图像效果,在侧扫声呐图像降噪中具有综合优势。 In view of the fact that the side-scan sonar image has the characteristics of low contrast and large noise intensity,which led to noise reduction effect of some traditional filter methods is insufficient,a denoising method based on shearlet transform is proposed.First,the side-scan sonar image is divided with shearlet transform.Then,shearlet coefficients are processed by the threshold method considering the noise measrement.Finally,the image is reconstructed through the inverse shearlet transform with the amended coefficients,and the purpose of image denoising is realized.The experiment results show that the method of this paper is suitable for side-scan sonar image processing,obtains better image denoising effect than Wiener filtering,wavelet filtering and non-local means filtering,has comprehensive advantages in side-scan sonar image noise reduction.
作者 王磊 金绍华 崔杨 魏源 WANG Lei;JIN Shaohua;CUI Yang;WEI Yuan(Department of Military Oceanography and Hydrography and Cartography,Dalian Naval Academy,Dalian 116018,China;No.92763 Unit of PLA,Dalian 116041,China;No.91937 Unit of PLA,Zhoushan 316002,China)Abstract:In view)
出处 《舰船科学技术》 北大核心 2022年第3期129-134,共6页 Ship Science and Technology
基金 国家自然科学基金资助项目(41876103)。
关键词 侧扫声呐 图像降噪 多尺度几何分析 剪切波变换 side-scan sonar image denoising multiscale geometric analysis shearlet transform
  • 相关文献

参考文献7

二级参考文献102

  • 1许枫,丛鸿文.侧扫声纳声图判别[J].海洋测绘,2001,21(1):58-61. 被引量:21
  • 2郭海涛,田坦,张春田.基于模糊聚类的声呐图像多区域分割[J].海洋技术,2004,23(3):39-40. 被引量:6
  • 3杜培军,孙敦新,林卉.窗口大小对SAR图像滤波效果的影响分析[J].国土资源遥感,2006,18(2):12-15. 被引量:6
  • 4冈萨雷斯.Digital Image Processing Using MATLAB[M].北京:电子工业出版社,2005.
  • 5程正兴.小波与小波变换导论[M].北京:机械工业出版社,2008.
  • 6[5]Stephane Mallat.信号处理的小波导引[M].杨力华,等译.北京:机械工业出版社,2003.
  • 7[1]EJ Candes. Ridgelets:Theory and Applications[D].USA:Department of Statistics, Stanford University, 1998.
  • 8[2]E J Candes. Monoscale Ridgelets for the Representation of Images with Edges[ R]. USA: Department of Statistics, Stanford University, 1999.
  • 9[3]Candes E J, D L Donoho. Curvelets[R]. USA: Department of Statistics,Stanford University, 1999.
  • 10[4]E L Pennec, S Mallat. Image compression with geometrical wavelets[A]. In Proc. of ICIP' 2000 [ C ]. Vancouver, Canada, September,2000.661-664.

共引文献268

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部