期刊文献+

Preparation of Solid Waste-Based Activated Carbon and Its Adsorption Mechanism for Toluene 被引量:2

在线阅读 下载PDF
导出
摘要 Regenerated activated carbon(RAC)samples were prepared by carbon activation using waste activated carbon from solid waste resources as the carbon source precursor coupled with adding alkaline additives,and then were further modified by potassium ferrate to finally prepare high-performance carbon for VOCs adsorption.At the same time,the samples before and after modification were systematically studied through characterization techniques such as SEM,Raman spectrometry,FT-IR,XPS,and dynamic/static adsorption.The results showed that the specific surface area and pore volume of the RAC after modification by the strong oxidant potassium ferrate increased by 1.4 times;the degree of defects was enhanced and the content of oxygen-containing functional groups on the surface increased significantly.Among them,the sample modified with potassium ferrate for 24 h had the best dynamic toluene adsorption performance(375.5 mg/g),and the dynamic adsorption capacity was twice that of the original sample(192.8 mg/g).The static adsorption test found that the maximum adsorption capacity of RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h was 796 mg/g,which indicated that the potassium ferrate modification treatment could significantly increase the VOCs adsorption performance of RAC.In addition,through consecutive toluene adsorption-desorption cycle tests,it was found that the RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h sample still retained 91%of adsorption activity after the fifth regeneration cycle.This indicates that RAC-6%K_(2)FeO_(4)+H_(2)SO_(4)-24h has good cycle stability and great application value for the efficient purification of industrial waste VOCs gas.
出处 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS 2022年第1期100-110,共11页 中国炼油与石油化工(英文版)
基金 financialy supported by the National Natural Science Foundation of China (No.21936005,52070114,21876093) the Postdoctoral Science Program of China (No.2019M660061)
  • 相关文献

同被引文献5

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部