期刊文献+

一种强杂波密度环境下的多目标跟踪算法 被引量:3

A Multi-target Tracking Algorithm under Strong Clutter Density Environment
在线阅读 下载PDF
导出
摘要 针对传统基于随机集的多目标跟踪方法高斯混合概率假设密度滤波器在强杂波环境下,会出现目标数目过估计及目标状态估计误差急剧增大的问题,提出了一种适用于强杂波密度环境下的多目标跟踪算法。该算法在概率假设密度平滑器基础上,在预测步通过量测与预测值之间的残差值确定椭圆门限值,从而获得与目标真实状态相近的量测值,降低了滤波器的时间复杂度;同时,在使用有效量测对高斯项进行更新的过程中,利用各高斯项的椭球门体积自适应调整更新公式中杂波强度参数,提高了多目标跟踪精度。仿真结果表明:该方法在强杂波密度环境下可有效降低计算时间并提高多目标跟踪精度。 Multi-target tracking in strong clutter often faces the problem of dense traces.The traditional multi-target tracking algorithm based on random finite set Gaussian mixture probability hypothesis density filter will overestimate the number of targets and sharply increase target state estimation errors.To solve the problems,a multi-target tracking algorithm under strong clutter density environment is proposed.Based on the probability hypothesis density smoother,the algorithm determines the ellipse threshold through the residual value between the measurement and the predicted value in the prediction step,so as to obtain a measurement value close to the true state of the target and reduce the time complexity of the filter.In the process of updating the Gaussian term with the effective measurement,the clutter intensity parameter in the update formula is adaptively adjusted by the ellipsoidal gate volume of each Gaussian term to improve the accuracy of multi-target tracking.Simulation results show that this method can effectively reduce the calculation time and improve the accuracy of multi-target tracking under strong clutter density environment.
作者 刘政玮 陈映 鲁耀兵 LIU Zhengwei;CHEN Ying;LU Yaobing(Beijing Institute of Radio Measurement,Beijing 100854,China)
出处 《现代雷达》 CSCD 北大核心 2022年第2期16-22,共7页 Modern Radar
关键词 多目标跟踪 概率假设密度滤波器 强杂波密度 平滑器 multi-target tracking probability hypothesis density filter strong clutter density smoothing filter
  • 相关文献

参考文献5

二级参考文献55

  • 1Deming R, Schindler J, Perlovsky L. Multi-target/multi-sensor tracking using only range and Doppler measurements[ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2009, 45 (2) : 593 - 611.
  • 2Munz M, Mahlisch M, Dietmayer K. Generic centralized multi sensor data fusion based on probabilistic sensor and environment models for driv- er assistance systems[J]. IEEE Intelligent Transportation Systems Magazine, 2010, 2 ( 1 ) : 6 - 17. .
  • 3Sankaranarayanan A C, Veeraraghavan A, Chellappa R. Object detection, tracking and recognition for multiple smart cameras[J]. Proceed- ings of the IEEE, 2008, 96(10) : 1606 - 1624.
  • 4Anderson K D. Radar detection of low-altitude targets in a maritime environment [ J]. IEEE Transactions on Antennas and Propagation, 1995, 43(6) : 609 -613.
  • 5Brekke E, Hallingstad O, Glattetre J. Tracking small targets in heavy-tailed clutter using amplitude information [ J]. 1EEE Journal of Oceanic Engineering, 2010, 35(2): 314-529.
  • 6. Moyer L R, Spak J, Lamanna P. A multi-dimensional Hough transform-based track-before-detect technique for detecting weak targets in strong clutter backgrounds [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2011, 47 (4) : 3062 - 3068.
  • 7Puranik S, Tugnait J K. Tracking of multiple maneuvering targets using multiscan JPDA and IMM filtering[ J]. IEEE Transactions on Aero- space and Electronic Systems, 2007, 43 ( 1 ) : 23 - 35.
  • 8Blackman S S. Multiple hypothesis tracking for multiple target tracking[J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 19 (1) : 5 -18.
  • 9Pulford G W. OTHR multipath tracking with uncertain coordinate registration [J] IEEE Transactions on Aerospace and Electronic Systems, 2004, 40(1) : 38 -56.
  • 10Wieneke M, Koch W. A PMHT approach for extended objects and object groups[ J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(3) : 2349 -2370.

共引文献38

同被引文献34

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部