摘要
属性抽取是构建知识图谱的关键一环,其目的是从非结构化文本中抽取出与实体相关的属性值。该文将属性抽取转化成序列标注问题,使用远程监督方法对电商相关的多种来源文本进行自动标注,缓解商品属性抽取缺少标注数据的问题。为了对系统性能进行精准评价,构建了人工标注测试集,最终获得面向电商的多领域商品属性抽取标注数据集。基于新构建的数据集,该文进行多组实验并进行实验结果分析。特别地,基于多种预训练语言模型,进行了领域内和跨领域属性抽取。实验结果表明,预训练语言模型可以较好地提高抽取性能,其中ELECTRA在领域内属性抽取表现最佳,而在跨领域实验中BERT表现最佳。同时,该文发现增加少量目标领域标注数据可以有效提高跨领域属性抽取效果,增强了模型的领域适应性。
Attribute extraction is a key step of constructing a knowledge graph. In this paper, the task of attribute extraction is converted into a sequence labeling problem. Due to a lack of labeling data in product attribute extraction, we use the distant supervision to automatically label multiple source texts related to e-commerce. In order to accurately evaluate the performance of the system, we construct a manually annotated test set, and finally obtain a new data set for product attribute extraction in multi-domains. Based on the newly constructed data set, we carried out intra-domain and cross-domain attribute extraction for a variety of pre-trained language models. The experimental results show that the pre-trained language models can better improve the extraction performance. Among them, ELECTRA performs the best in attribute extraction in in-domain experiments, and BERT performs the best in cross-domain experiments. we also find that adding a small amount of target domain annotation data can effectively improve the performance cross-domain attribute extraction and enhance the domain adaptability of the model.
作者
张世奇
马进
周夏冰
贾昊
陈文亮
张民
ZHANG Shiqi;MA Jin;ZHOU Xiabing;JIA Hao;CHEN Wenliang;ZHANG Min(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处
《中文信息学报》
CSCD
北大核心
2022年第1期56-64,共9页
Journal of Chinese Information Processing
基金
国家自然科学基金(61876115)。
关键词
属性抽取
远程监督
预训练语言模型
跨领域学习
attribute extraction
distant supervision
pre-trained language model
domain adaptation