期刊文献+

Rich B active centers in Penta-B_(2)C as high-performance photocatalyst for nitrogen reduction 被引量:3

原文传递
导出
摘要 The photocatalytic nitrogen reduction reaction(NRR) has mild reaction conditions and only requires sunlight energy as a driving force to replace the traditional ammonia synthesis method. We herein investigate the catalytic activity and selectivity on Penta-B_(2)C for NRR by using density functional theory calculations. Penta-B_(2)C is a semiconductor with an indirect bandgap(2.328 e V) and is kinetically stable based on molecular dynamic simulations. The optical absorption spectrum of Penta-B;C is achieved in the ultraviolet and visible range. Effective light absorption is more conducive to generate photo-excited electrons and improving photocatalytic performances. Rich B atoms as activation sites in Penta-B_(2)C facilitate capturing N_(2). The activated N_(2)molecule prefers the side-on adsorption configuration on Penta-B_(2)C, which facilitates the subsequent reduction reaction. Among considered NRR mechanisms on Penta-B_(2)C, the best pathway prefers the enzymatic mechanism, only required a low onset potential of 0.23 V. The hydrogen evolution reaction is inhibited when the hydrogen adsorption concentration is increased or N_(2)molecules first occupy the adsorption sites. Our results indicate Penta-B_(2)C is a highly reactive and selective photocatalyst for NRR. Our work provides theoretical insights into the experiments and has guiding significance to synthesize efficient NRR photocatalysts.
出处 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第12期3821-3824,共4页 中国化学快报(英文版)
基金 funded by the Natural Science Foundation of China (No. 21603109) the Henan Joint Fund of the National Natural Science Foundation of China (No. U1404216) the Scientific Research Program Funded by Shaanxi Provincial Education Department (No. 20JK0676)。
  • 相关文献

同被引文献31

引证文献3

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部