摘要
元激发或准粒子用于描述宏观物体处于低激发态时的物理性质.不同物理模型对应着不同准粒子,这些独立的准粒子的集合体,使本来复杂的多体问题变得易于处理.在三维及以上的空间中,按照粒子的自旋属性,自旋为半奇数的符合费米-狄拉克统计,自旋为整数的符合玻色-爱因斯坦统计.1977年,Leinaas和Myrheim在研究二维空间拓扑性质后,提出一种遵循分数统计规律的准粒子——任意子,随着二维物理系统的发展,任意子从纯理论研究成为实际研究对象.
The concept of quasiparticle or elementary excitations can be used to describe the physical properties of a macroscopic object in a low-excited state.Different physical models correspond to different quasiparticles,and these quasiparticles make the complicated multi-body problem easier to deal with.In three or more than three-dimensional space,according to the spin properties of particles,particles with half-integer and integer spin are consistent with Fermi-Dirac statistics and Bose-Einstein statistics,respectively.In 1977,after studying the topological properties of two-dimensional space by Leinaas and Myrheim,a kind of quasiparticle-anyon with the fractional statistics is proposed.With the development of two-dimensional physical systems,anyon has changed from pure theoretical research to practical research object.
作者
郭星原
杨鹤佳
开来
梁军请
GUO Xing-yuan;YANG He-jia;KAI Lai;LIANG Jun-qing(Department of Condensed Matter Physics,College of Physics,Jilin University,Changchun,Jilin 130012,China)
出处
《大学物理》
2022年第3期32-35,40,共5页
College Physics
基金
吉林大学交叉学科科研团队(10183JXTD202002)资助。
关键词
准粒子
元激发
任意子
统计规律
quasiparticles
elementary excitation
anyon
statistical laws