期刊文献+

基于百度指数和手足口病的疱疹性咽峡炎预测模型研究 被引量:6

The Prediction model of herpangina epidemic trend based on about:blank index and hand, foot and mouth disease
原文传递
导出
摘要 目的利用手足口病百度指数和发病资料建立预测模型预测疱疹性咽峡炎的流行趋势,为分析监测资料有限或缺失的传染病疫情提供参考。方法通过中国疾病预防控制信息系统收集浙江省2015年第1周至2021年第39周的手足口病发病资料,通过百度搜索收集同期手足口病和疱疹性咽峡炎的百度指数。采用小波分析法分析手足口病百度指数与其发病时间序列的关联特征;建立手足口病百度指数与其发病数的随机森林训练模型,采用平均百分比误差评价拟合效果,代入疱疹性咽峡炎百度指数预测同期流行趋势。结果疱疹性咽峡炎百度指数和手足口病百度指数,手足口病百度指数和其发病数均显示出以26周和52周为周期的双峰型季节特征。手足口病百度指数和其发病时间序列相位差小于0.1周,建立的同期训练模型平均百分比误差为13.07%,手足口病预测发病数与实际报告发病数的一致性较好。预测疱疹性咽峡炎2015—2020年拟合发病数分别为28 822例、27 341例、28 422例、51 782例、52 457例和5 691例,2021年截至第39周发病数为48 702例。发病高峰与手足口病相似,主要在5—7月。结论基于百度指数和手足口病发病资料建立的模型可用于预测疱疹性咽峡炎的流行趋势。 ObjectiveTo establish a prediction model of herpangina epidemic trend based on about:blank index and hand,foot and mouth disease, so as to provide insights into analyses of communicable disease epidemics with limited or missing surveillance data.MethodsThe incidence of hand, foot and mouth disease in Zhejiang Province during the period from the first week of 2015 through the 39 th week of 2021 was retrieved from the China Information System for Disease Control and Prevention, and the about:blank index of hand, foot and mouth disease and herpangina was collected via the about:blank search engine during the same period. The correlation between the about:blank index and time series of hand, foot and mouth disease was examined using wavelet analysis. In addition, a random forest training model was created based on the about:blank index and incidence of hand, foot and mouth disease, and the fitting effectiveness was evaluated using the mean percentage error, while the about:blank index of herpangina was included in the model to predict the epidemic trend of herpangina during the study period.ResultsThe about:blank index of herpangina and hand, foot and mouth disease, and the about:blank index and incidence of hand, foot and mouth disease all appeared two peaks at the 26 th and 52 th week. The phase difference was less than 0.1 week between the about:blank index and time series of hand, foot and mouth disease, and the mean percentage error of the training model was 13.07%, with high concordance between the predicted number and actual report number of cases with hand, foot and mouth disease. The numbers of herpangina cases were predicted to be 28 822, 27 341, 28 422, 51 782, 52 457 and 5 691 from 2015 to 2020, and there were totally48 702 herpangina cases reported until the 39 th week of 2021. Like hand, foot and mouth disease, the incidence of herpangina peaked between May and July.Conclusion and incidence of hand, foot and mouth disease is feasible to predict the epidemic trend of herpangina.
作者 吴昊澄 鲁琴宝 丁哲渊 王心怡 傅天颖 杨珂 吴晨 林君芬 WU Haocheng;LU Qinbao;DING Zheyuan;WANG Xinyi;FU Tianying;YANG Ke;WU Chen;LIN Junfen(Department of Public Health Surveillance and Advisory,Zhejiang Provincial Center for Disease Control and Prevention,Hangzhou,Zhejiang 310051,China)
出处 《预防医学》 2022年第3期217-221,共5页 CHINA PREVENTIVE MEDICINE JOURNAL
基金 浙江省重点研发计划项目(2021C03038)。
关键词 疱疹性咽峡炎 百度指数 手足口病 预测 herpangina about:blank index hand foot and mouth disease prediction
  • 相关文献

参考文献9

二级参考文献65

  • 1Brownstein, J.S., Freifeld, C.C., Reis, B.Y., Mandl, K.D., 2008 Surveillance sans frontiers: Intemet-based emerging infectious disease intelligence and the Healthmap project. PLoS Med., 5(7):e151. [doi:10.1371/journal.pmed.0050 1511.
  • 2Bundort; M.K., Wagner, T.H., Singer, S.J,, Baker, L.C., 2006. Who searches the Internet for health information? Health Serv. Res., 41:819-836. [doi:10.1111/j.1475-6773.2006.00510.x].
  • 3Cooper, C.P., Mallon, K.E, Leadbetter, S., Pollack, L.A., Peipins, L.A., 2005, Cancer lnternet search activity on a major search engine, United States 2001-2003. J. Med. Internet Res., 7(3):e36. [doi:10.2196/jmir.7.3.e36].
  • 4Diaz, J.A., Griffith, R.A., Ng, J.J., Reinert, S.E., Friedmann, ED., Moulton, A.W., 2002. Patients' use of the Internet for medical information. J. Gener. Intern. Med., 17(3): 180-185. [dok 10.1046/j.1525-1497.2002.10603.x].
  • 5Ettredge, M., Gerdes, J., Karuga, G., 2005. Using Web-based search data to predict macroeconomic statistics. Commun. A CM, 48:87-92. [doi: 10.1145/1096000. ] 096010].
  • 6Fox, S., 2006. Pew Internet and American Life Project. Online Health Search. Available from http://www.pewinternet, org/PPF/r/190/report display.asp [Accessed on Apr. 25, 2008],.
  • 7Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., Brilliant, L., 2009, Detecting influenza epidemics using search engine query data. Nature, 457(7232):1012-1014. [doi:10.1038/nature07634].
  • 8Johnson,H.A.,Wagner, M.M., Hogan, W.R., Chapman, W., Olszewski, R.T., Dowling, J., Barnas, G., 2004. Analysis of Web access logs for surveillance of influenza. Stud. Health Technol. Inform., 107:1202-1208.
  • 9Polgreen, P.M., Chen, Y., Pennock, D.M., Nelson, D., 2008. Using Intemet searches for influenza surveillance. Clin. Infect. Dis., 47(11):1443-1448. [doi:10.1086/593098].
  • 10Wilson, K., Brownstein, J.S., 2009. Early detection of disease outbreaks using the Internet. CMAJ, 1811(8). [doi: 10.1503/ cmaj.090215].

共引文献148

同被引文献80

引证文献6

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部