期刊文献+

Interface engineering of porous Fe^(2)P-WO_(2.92) catalyst with oxygen vacancies for highly active and stable large-current oxygen evolution and overall water splitting 被引量:1

在线阅读 下载PDF
导出
摘要 Constructing a low cost,and high-efficiency oxygen evolution reaction(OER)electrocatalyst is of great significance for improving the performance of alkaline electrolyzer,which is still suffering from highenergy consumption.Herein,we created a porous iron phosphide and tungsten oxide self-supporting electrocatalyst with oxygen-containing vacancies on foam nickel(Fe_(2)P-WO_(2.92)/NF)through a facile insitu growth,etching and phosphating strategies.The sequence-controllable strategy will not only generate oxygen vacancies and improve the charge transfer between Fe_(2)P and WO_(2.92) components,but also improve the catalyst porosity and expose more active sites.Electrochemical studies illustrate that the Fe_(2)P-WO_(2.92)/NF catalyst presents good OER activity with a low overpotential of 267 mV at 100 mA cm^(-2),a small Tafel slope of 46.3 mV dec^(-1),high electrical conductivity,and reliable stability at high current density(100 mA cm^(-2) for over 60 h in 1.0 M KOH solution).Most significantly,the operating cell voltage of Fe_(2)P-WO_(2.92)/NF‖Pt/C is as low as 1.90 V at 400 mA cm^(-2) in alkaline condition,which is one of the lowest reported in the literature.The electrocatalytic mechanism shows that the oxygen vacancies and the synergy between Fe_(2)P and WO_(2.92) can adjust the electronic structure and provide more reaction sites,thereby synergistically increasing OER activity.This work provides a feasible strategy to fabricate high-efficiency and stable non-noble metal OER electrocatalysts on the engineering interface.
出处 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期574-582,共9页 能源化学(英文版)
基金 supported by the National Natural Science Foundation of China(no.21965005) the Natural Science Foundation of Guangxi Province(2018GXNSFAA294077,2021GXNSFAA076001) the Project of High-Level Talents of Guangxi(F-KA18015) Guangxi Technology Base and Talent Subject(GUIKE AD18126001,GUIKE AD20297039)。
  • 相关文献

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部