期刊文献+

基于秩最小化矩阵去噪的船舶轨迹重构方法 被引量:4

A Vessel Trajectory Reconstruction Method Based on Low-rank Minimization Matrix Denoising
在线阅读 下载PDF
导出
摘要 针对船舶自动识别系统(Automatic Identification System,AIS)在实际应用中存在错误数据频发、数据丢包等问题,本文提出一种基于秩最小化矩阵去噪的船舶轨迹重构方法,利用去噪实现轨迹重构,同时,实现对轨迹的去噪和缺失补全。该方法通过线性插值实现经度对齐,将轨迹数据转化为轨迹矩阵,从而补全轨迹中的缺失值。由于补全结果存在非常大的误差,因此,引入PLR(Patch-Based Low-Rank Minimization)算法去噪,消除误差。同时,为进一步提升补全效果,通过2D-VMD(Two-Dimensional Variational Mode Decomposition)算法将矩阵分解为不同频率的IMF(Intrinsic Mode Function),并分别进行PLR去噪,合并去噪结果,得到最终重构后轨迹。本文以长江武汉段水域船舶AIS轨迹为研究对象,通过实验证明该方法在不同缺失比例以及随机缺失和连续缺失两种情境下具有鲁棒性和较强的稳定性;并与HALRTC(High-Accuracy Low-Rank Tensor Completion)、TRMF(Temporal Regularized Matrix Factorization)等方法进行比较,结果表明,该方法相较于HALRTC等方法具有更高的精度,并在高损失率下表现出较好的重构效果。 The operation of(Automatic Identification System)AIS shows some frequent error data and missing data.This paper proposes a vessel trajectory reconstruction method based on low-rank minimization matrix denoising.This method realizes the trajectory reconstruction by denoising and the trajectory denosing and missing data become complete through a union method.In this method,the trajectory matrix is constructed and the corresponding longitudes of the points in the same column are ensured to be the same via linear interpolation to complete the missing values in the trajectories.Due to the large error in the completion results,the PLR(Patch-Based Low-Rank Minimization)algorithm is used to denoise and reduce bias.To further improve the completion effect,the trajectory matrix is decomposed into the IMFs(Intrinsic Mode Functions)with different frequencies by the 2 D-VMD(Two-Dimensional Variational Mode Decomposition)and then denoised by the PLR algorithm.The reconstructed trajectories were obtained by combining the denoising results.The trajectories in the AIS of Wuhan section of Yangtze River were studied as an example.This method is robust and stable to the trajectories with different missing rate under two missing scenarios:random missing and continuous missing.In addition,the proposed method is tested and compared with the High-Accuracy Low-Rank Tensor Completion(HALRTC)Temporal Regularized Matrix Factorization(TRMF)and other methods.The results show the proposed method has higher accuracy especially when the trajectories have a high missing rate.
作者 刘文 汪文博 LIU Wen;WANG Wen-bo(School of Navigation,Wuhan University of Technology,Wuhan 430063,China;Hubei Key Laboratory of Inland Shipping Technology,Wuhan University of Technology,Wuhan 430063,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2022年第1期106-114,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 国家重点研发计划(2018YFC1407404)。
关键词 智能交通 船舶轨迹重构 秩最小化矩阵去噪 AIS数据 交通安全 intelligent transportation vessel trajectory reconstruction low-rank minimization matrix denoising Automatic Identify System(AIS)data traffic safety
  • 相关文献

参考文献3

二级参考文献21

  • 1陈为,沈则潜.数据可视化[M].北京:电子工业出版社,2013:120-127.
  • 2HE W, XIONG J, LIU M C, et al. Technology of information collection and analyze about steer operation behavior of inland waterway sailing ship[J]. Journal of Coastal Research, 2015(73): 483-489.
  • 3DEMSAR U, BUCHIN K, VAN LOON E E, et al.Stacked space- time densities: A geovisualisation approach to explore dynamics of space use over time[J].GeoInformatica, 2014, 19(1): 85-115.
  • 4WEI Z, CHEN Z, ANWAR A, et al. MetroBuzz: Interactive 3D visualization of spatiotemporal data[C]//The 2012 International Conference on Computer and Information Science, Kuala Lumpur:ESTCON, 2012:143-147.
  • 5Willems N, VAN DE WETERING H, VAN WIJK J J.Visualization of vessel movements[J]. Computer Graphics Forum, 2010, 28(3): 959-966.[9] TOMINSKI C, SCHUMANN H, ANDRIENKO G, et al.Stacking-based visualization of trajectory attributedata[J]. IEEE Transactions on Visualization and Computer Graphics, 2012, 18(12): 2565-2574.
  • 6KRAAK M J. The space- time cube revisited from a geovisualization perspective[C]//Proc. 21st International Cartographic Conference. 2003: 1988-1996.
  • 7ANDRIENKO G L, ANDRIENKO N V. Poster: Dynamic time transformation for interpreting clusters of trajectories with space-time cube[C]//IEEE VAST.2010: 213-214.
  • 8徐阳,刘笃仁,周娟.自动识别系统(AIS)中的通信系统硬件设计[J].电子元器件应用,2008,10(9):52-55. 被引量:2
  • 9刘敬贤,张涛,刘文.船舶交通流组合预测方法研究[J].中国航海,2009,32(3):80-84. 被引量:23
  • 10文元桥,刘敬贤.港口公共航道船舶通过能力的计算模型研究[J].中国航海,2010,33(2):35-39. 被引量:27

共引文献36

同被引文献22

引证文献4

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部