期刊文献+

High Resolution SAR Image Algorithm with Sample Length Constraints for the Range Direction 被引量:4

在线阅读 下载PDF
导出
摘要 The traditional Range Doppler(RD)algorithm is unable to meet practical needs owing to the limit of resolution.The order of fractional Fourier Transform(FrFT)and the length of sampling signals affect SAR imaging performance when FrFT is applied to RD algorithm.To overcome the above shortcomings,the purpose of this paper is to propose a high-resolution SAR image algorithm by using the optimal order of FrFT and the sample length constraints for the range direction.The expression of the optimal order of SAR range signals via FrFT is deduced in detail.The initial sample length and its constraints are proposed to obtain the best sample length of SAR range signals.Experimental results demonstrate that,when the range sampling-length changes in a certain interval,the best sampling-length will be obtained,which the best values of the range resolution,PSLR and ISLR,will be derived respectively.Compared with traditional RD algorithm,the main-lobe width of the peak-point target of the proposed algorithm is narrow in the range direction.While the peak amplitude of the first side-lobe is reduced significantly,those of other side-lobes also drop in various degrees.
出处 《Computers, Materials & Continua》 SCIE EI 2020年第6期1533-1543,共11页 计算机、材料和连续体(英文)
基金 This work is supported by the 13th Five-Year Plan for Jiangsu Education Science(D/2020/01/22) JSPIGKZ and Natural Science Research Projects of Colleges and Universities in Jiangsu Province(19KJB510022)。
  • 相关文献

参考文献2

二级参考文献10

  • 1王明生,刘卓军,张艳硕.权重不同参与者之间的秘密共享(英文)[J].北京电子科技学院学报,2005,13(2):1-8. 被引量:20
  • 2Zhao Xinghao,Tao Ran,Zhou Siyong. A novel sequential estimation algorithm for chirp signal parameters[Z]. 2003 International Conference on Neural Network & Signal Processing,Nanjing,2003.
  • 3Ozaktas H M,Kutay M A. Digital computation of the fractional Fourier transform[J]. IEEE Trans Signal Processing, 1996,44(9):2141-2150.
  • 4Pei S C, Yeh M H. Discrete fractional Fourier transform based on orthogonal projections[J]. IEEE Trans Signal Processing, 1999,47(5):1335-1348.
  • 5Candan C, Kutay M A. The discrete fractional Fourier transform[J]. IEEE Trans Signal Processing,2000,48(5):1329-1337.
  • 6Tao Ran, Ping Xianjun, Zhao Xinghao. A novel discrete fractional Fourier transform[Z]. CIE International Conference of Radar, Beijing,2001.
  • 7Almeida L B. The fractional Fourier transform and time-frequency representations[J]. IEEE Trans Signal Processing, 1994,42 (11):3084-3091.
  • 8尚雪娇,杜伟章.可公开验证可更新的多秘密共享方案[J].计算机应用研究,2013,30(12):3794-3796. 被引量:3
  • 9冯朝胜,秦志光,袁丁.云数据安全存储技术[J].计算机学报,2015,38(1):150-163. 被引量:140
  • 10齐林,陶然,周思永,王越.基于分数阶Fourier变换的多分量LFM信号的检测和参数估计[J].中国科学(E辑),2003,33(8):749-759. 被引量:175

共引文献130

同被引文献8

引证文献4

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部