摘要
Lumbini is a world heritage site located in the southern plains region of Nepal, and is regarded as a potential site for evaluating transboundary air pollution due to its proximity to the border with India. In this study, 82 aerosol samples were collected between April 2013 and July 2014 to investigate the levels of particulate-bound mercury(PBM) and the corresponding seasonality, sources, and influencing factors.The PBM concentration in total suspended particulate(TSP) matter ranged from 6.8 pg m^(-3) to351.7 pg m^(-3)(mean of 99.7 ± 92.6 pg m^(-3)), which exceeded the ranges reported for remote and rural sites worldwide. The Hg content(PBM/TSP) ranged from 68.2 ng g^(-1) to 1744.8 ng g^(-1)(mean of 446.9 ±312.7 ng g^(-1)), indicating anthropogenic enrichment. The PBM levels were higher in the dry season(i.e.,winter and the pre-monsoon period) than in the wet season(i.e., the monsoon period). In addition, the δ^(202) Hg signature indicated that waste/coal burning and traffic were the major sources of Hg in Lumbini during the pre-monsoon period. Meanwhile, precipitation occurring during photochemical processes in the atmosphere may have been responsible for the observed Δ^(199) Hg values in the aerosol samples obtained during the monsoon period. The PBM concentration was influenced mostly by the resuspension of polluted dust during dry periods and crop residue burning during the post-monsoon period. The estimated PBM deposition flux at Lumbini was 15.7 lg m^(-2) yr^(-1). This study provides a reference dataset of atmospheric PBM over a year, which can be useful for understanding the geochemical cycling of Hg in this region of limited data.
基金
supported by the National Natural Science Foundation of China (Grant Nos.41801042 and 41630754)
the Second Tibetan Plateau Scientific Expedition and Research Program (STEP)(Grant No.2019QZKK0605)
State Key Laboratory of Cryospheric Sciences
Chinese Academy of Sciences (Grant No.SKLCSZZ-2020)
Grant received from the Asia-Pacific Network for Global Change Research (APN)(Grant reference:CRECS2020-07MYTripathee) is highly appreciated
supported by a PIFI fellowship from the Chinese Academy of Sciences as a young staff member (2020FYC0001)。