期刊文献+

基于瞬态反射-透射技术的金属纳米薄膜电子和晶格传热动力学研究

A comparison of transient reflection and transmission techniques for electron and lattice dynamics in metal nanofilms
在线阅读 下载PDF
导出
摘要 使用飞秒瞬态反射-透射技术研究了金和铜纳米薄膜的电子和晶格动力学,应用双温和Curde近似模型分析了金属薄膜的非平衡热传导动力学。假设在瞬态反射中电子-晶格耦合常数为常数的情况下,计算超快脉冲加热后的电子和晶格温度。金和铜纳米薄膜的反射和透射信号在初始2 ps内相似,随后时间里信号明显不同,透射模式下的电子-晶格耦合效应要比反射模式下的更强和更敏感。这是由于沿着膜厚方向的温度变化受到金属薄膜和基底间的界面散射影响造成的。在研究半透明薄膜的超快动力学过程中,需要同时考虑反射和透射情况。 The electron and lattice dynamics of gold and copper nanofilms are measured with femtosecond transient reflection and transmission techniques.Two-temperature model(TTM)and Crude-model approximation are applied to study the mechanism of heat transfer for metal nanofilms theoretically.Electron and lattice temperatures are calculated by TTM,which assume electron-lattice coupling coefficient as a constant for gold and copper.Compared the results of reflection with transmission,the difference of electron relaxation is negligible at the first two picoseconds,but electron-lattice coupling effect in the transmission method is stronger and more sensitive than that of the reflection method under the identical experimental conditions.Change of temperature gradient along with the direction of film thickness and electron-lattice coupling resistance due to the boundary scattering are responsible for the difference between transient reflection and transmission data.Both transient reflection and transmission of semitransparent films should be considered together for the investigation on the mechanism of ultrafast dynamics.
作者 吴文智 任世为 孔德贵 柴志军 WU Wen-Zhi;REN Shi-Wei;KONG De-Gui;CHAI Zhi-Jun(College of Electronic Engineering, Heilongjiang University, Harbin 150080, China)
出处 《黑龙江大学工程学报》 2021年第4期41-50,共10页 Journal of Engineering of Heilongjiang University
基金 国家自然科学基金面上项目(51773053) 黑龙江省留学归国人员科学基金项目(LC2017030)。
关键词 双温模型 电子-声子耦合 超快脉冲加热 基底效应 Crude模型近似 two-temperature model(TTM) electron-lattice coupling ultrafast pulsed laser heating substrate effect Crude-model approximation
  • 相关文献

参考文献1

二级参考文献54

  • 1Rhodes C, Franzen S, Maria J P, Losego M, Leonard D N, Laughlin B, Duscher G and Weibel S 2006 J. Appl. Phys. 100 054905.
  • 2Franzen S 2008 J. Phys. Chem. C 112 6027.
  • 3Rhodes C, Cerruti M, Efremenko A, Losego M, Aspnes D E, Maria J P and Franzen S 2008 J. Appl. Phys. 103 093108.
  • 4Franzen S, Rhodes C, Cerruti M, Gerber R W, Losego M, Maria J P and Aspnes D E 2009 Opt. Lett. 34 2867.
  • 5Losego M D, Efremenko A Y, Rhodes C L, Cerruti M G, Franzen S and Maria J P 2009 J. Appl. Phys. 106 024903.
  • 6Noginov M A, Gu L, Livenere J, Zhu G, Pradhan A K, Mundle R, Bahoura M, Barnakov Y A and Podolskiy V A 2011 Appl. Phys. Lett. 99 021101.
  • 7Chen N C, Lien W C, Liu C R, Huang Y L, Lin Y R, Chou C, Chang S Y and Ho C W 2011 J. Appl. Phys. 109 043104.
  • 8Soref R, Peale R E and Buchwald W 2008 Opt. Express 16 6507.
  • 9Guske J T, Brown J, Welsh A and Franzen S 2012 Opt. Express 20 23215.
  • 10Otto A and Sohler W 1975 Solid State Commun. 16 1319.

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部