期刊文献+

Magnetic Field-induced Enhancement of Phase Change Heat Transfer via Biomimetic Porous Structure for Solar-thermal Energy Storage 被引量:1

原文传递
导出
摘要 Multifunctional phase change composites are in great demand for all kinds of industrial technologies and applications,which have both superior latent heat capacity and excellent solar-thermal conversion capability.In this research,biomimetic phase change composites are made by inspired by natural systems,successfully getting the high thermal conductivity of carbon foam and magnetism of composites together,to establish a novel solar-thermal energy storage method.The morphology and the thermal characteristics of biomimetic phase change composites have been characterized.The results showed that the maximum storage efficiency of the biomimetic phase change materials increased by 56.3%compared to that of the based materials,and it can further be improved by the application of magnetic field.Meanwhile the heat transfer process of solarthermal conversion and energy storage in biomimetic porous structure under the external physical fields has been explained by simulation.Thus,the magnetic field-induced method applied in this research has better solar-thermal energy storage characteristics within a porous structure by dynamically controlling the magnetism,which has potential uses for various sustainable applications,including waste-heat recovery,energy conservation in building,and solar-thermal energy storage.
出处 《Journal of Bionic Engineering》 SCIE EI CSCD 2021年第5期1215-1224,共10页 仿生工程学报(英文版)
基金 financially supported by the China National Key Research and Developmeni Plan Project(Grant No.2018YFA0702300) H2020-MSCA-RISE(778104)Smart thermal nlanagement of high power microprocessors using phase-change(ThermaSMART).
  • 相关文献

参考文献5

二级参考文献16

共引文献13

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部