期刊文献+

基于磁共振影像层间插值的超分辨率及多视角融合 被引量:1

Super-resolution and multi-view fusion based on magnetic resonance image inter-layer interpolation
在线阅读 下载PDF
导出
摘要 针对磁共振(MR)图像切片内分辨率高而切片间分辨率低,导致MR在冠状面和矢状面上缺乏医学诊断意义的问题,提出了一种基于层间插值及多视角融合网络的医学图像处理算法。首先,引入了层间插值模块,用来将MR体数据沿冠状和矢状方向从三维数据切割成二维图像;然后,在分别对冠状面和矢状面进行特征提取之后,通过空间矩阵滤波器动态计算权重用于任意大小的上采样因子放大图像;最后,将冠状图和矢状图在层间插值模块中得到的结果聚合成三维数据后再次沿轴状方向切割成二维图像,对得到的二维图像两两进行融合并通过轴状方向数据进行修正。实验结果表明,所提算法相较于其他超分辨率算法在×2、×3、×4尺度下的峰值信噪比(PSNR)均有1 dB左右的提升,可见所提算法有效提升了图像的重建质量。 The high resolution in Magnetic Resonance(MR)image slices and low resolution between the slices lead to the lack of medical diagnostic significance of MR in the coronal and sagittal planes.In order to solve the problem,a medical image processing algorithm based on inter-layer interpolation and multi-view fusion network was proposed.Firstly,the inter-layer interpolation module was introduced to cut the MR volume data from three-dimensional data into two-dimensional images along the coronal and sagittal directions.Then,after the feature extraction on the coronal and sagittal planes,the weights were dynamically calculated by the spatial matrix filter and used for upsampling factor with any size to magnify the image.Finally,the results of the coronal and sagittal images obtained in the inter-layer interpolation module were aggregated into three-dimensional data and then cut into two-dimensional images along the axial direction.The obtained two-dimensional images were fused in pairs and corrected by the axial direction data.Experimental results show that,compared with other super-resolution algorithms,the proposed algorithm has improved the Peak Signal-to-Noise Ratio(PSNR)by about 1 dB in×2,×3,and×4 scales.It can be seen that the proposed algorithm can effectively improve the quality of image reconstruction.
作者 李萌 秦品乐 曾建潮 李俊伯 LI Meng;QIN Pinle;ZENG Jianchao;LI Junbo(Shanxi Medical Imaging and Data Analysis Engineering Research Center(North University of China),Taiyuan Shanxi 030051,China;School of Data Science and Technology,North University of China,Taiyuan Shanxi 030051,China;Shanxi Medical Imaging Artificial Intelligence Engineering Technology Research Center(North University of China),Taiyuan Shanxi 030051,China)
出处 《计算机应用》 CSCD 北大核心 2021年第11期3362-3367,共6页 journal of Computer Applications
基金 山西省研究生教育创新项目(2020SY381)。
关键词 超分辨率 神经网络 层间插值 脑部磁共振影像 多视角融合 super-resolution neural network inter-layer interpolation brain Magnetic Resonance(MR)image multi-view fusion
  • 相关文献

参考文献2

二级参考文献7

  • 1Grevera G J,Udupa J K.An Objective Comparison of 3-D Image Interpolation Methods[J].IEEE Trans Med Image,1998,17(4):642-652.
  • 2Lehmann T M,Gonner C,Spitzer K.Survey:interpolation methods in medical image processing[J].IEEE Trans Med Image,1999,18(11):1049-1075.
  • 3Goshtasby A,Turner D A,Ackerman L V.Matching tomographic slices for interpolation[J].IEEE Trans.Med.Imaging,1992,11(4):507-5165.
  • 4Grevera G J,Udupa J k,Shaped-based interpolation of multidimensional grey-level images[J].IEEE Trans.Med.Imaging,1996,15(6):881-892.
  • 5Penney G P,Schnabel J A,Rueckert D,et al.Registration-Based Interpolation[J].IEEE Trans Med Image,2004,23(7):922-926.
  • 6Rueckert D,Sonoda L I,Hayes C,et al.Nonrigid Registration Using Free-Form Deformations:Application to Breast MR Images[J].IEEE Trans Med Image,1999,18(8):712-721.
  • 7Y.Choi and S.Lee.Local Injectivity conditions of 2d and 3d uniform cubic B-spline functions.Graphical Models,2000,62(6):411-427.

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部