期刊文献+

大数据与人工智能背景下的网络舆情治理:作用、风险和路径 被引量:43

Network Public Opinion Management in the Context of Big Data and Artificial Intelligence:Value,Risk and Path Exploration
在线阅读 下载PDF
导出
摘要 大数据技术和人工智能技术作为强有力的信息化手段,为网络舆情治理工作提供了全新的信息资源、技术手段和治理范式,在一定程度上实现了网络舆情治理的全面化、自动化、科学化、精准化和个性化,增强了网络舆情治理的效能;同时,大数据与人工智能在网络舆情治理中仍存在着算法呈现舆情与真实社会民意存在偏差、舆情预测干涉和情绪分析复杂性导致舆情误判、虚假新闻和信息茧房问题误导舆情引导决策等问题。在此基础上,针对网络舆情治理面临的隐私伦理、数据垄断、数据滥用信息管理风险等新挑战,提出了具体的解决措施:优化技术升级,推进网络舆情治理综合化技术发展;完善舆情治理法制和理念,实现舆情数据管理应用机制升级;壮大人才队伍,培养复合型舆情治理专业人才;加强平台自律,提升公众的网络媒介素养和算法素养。 As a powerful means of information,big data technology and artificial intelligence technology are moving toward integration.They provide brand-new information resources,technical means and governance paradigms for the network public opinion management.And to a certain extent,they have realized the comprehensive,automatic,scientific,precise and personalized management of network public opinion.However,there still exist some challenges like deviations between the public opinion presented by the algorithm and the real public opinion,public opinion misjudging risks,false news,information cocoon rooms,public opinion misleading in decision-making,privacy ethics,data monopoly,and risks of data abuse in information management.In order to solve the challenges,some measures for improvement are concluded in the paper.
作者 李明德 邝岩 LI Mingde;KUANG Yan(Research Center for Intelligent Understanding of Communication Content,Xi′an Jiaotong University,Xi′an 710049,China;School of Journalism and New Media,Xi′an Jiaotong University,Xi′an 710049,China;School of Marxism,Xi′an Jiaotong University,Xi′an 710049,China)
出处 《北京工业大学学报(社会科学版)》 CSSCI 北大核心 2021年第6期1-10,共10页 Journal of Beijing University of Technology (Social Sciences Edition)
基金 教育部哲学社会科学研究重大课题攻关项目(18JZD022) 陕西省软科学研究计划资助项目(2021KRM182) 传播内容认知国家重点实验室开放课题(20K02)。
关键词 国家治理 跨学科融合 网络舆情治理 大数据 人工智能 state governance interdisciplinary fusion network public opinion management big data artificial intelligence
  • 相关文献

参考文献8

二级参考文献66

  • 1薛永龙,汝倩倩.遮蔽与解蔽:算法推荐场域中的意识形态危局[J].自然辩证法研究,2020,0(1):50-55. 被引量:41
  • 2M·麦考姆斯,T·贝尔,郭镇之.大众传播的议程设置作用[J].新闻大学,1999(2):32-36. 被引量:59
  • 3数据素养[EB/OL].[2014-07-26].http://baike.about:blank.com/view/10402202.htm.
  • 4Manyika J,Chui M,Brown B,et al.Big data:the next fintier for innovation,competition,and productivity[EB/OL].[2014-12-12]. http://www.mckinsey.com/insights/business_technology/big_ data_the_next_frontier_for_innovation.
  • 5Ginsberg J,Mohebbi MH,Patel RS,et al.Detecting influenza epidemics using search engine query data[J].Nature,2009,457 (7232):1012-1014.
  • 6Google.How does this work?[EB/OL].[2014- 12- 12].https:// www.google.orglflutrends/about/how, html.
  • 7Kelly H,Grant K.Interim analysis of pandemic influenza (H1N1) 2009 in Australia: surveillance trends, age of infection and effectiveness of seasonal vaccination[J].Euro Surveill,2009,14(31): 19288.
  • 8Wilson N,Mason K,Tobias M,et al.Interpreting Google flu trends data for pandemic H1N1 influenza: the New Zealand experience[J].Euro Surveill,2009,14(44): 19386.
  • 9Madrigal AC.In defense of Google flu trends[EB/OL].[2014- 12-12].http://www.theatlantic.cona/technology/archive/2014/ O3/in - defense - of- google - flu - trends/359688/?single_page: true.
  • 10Olson DR,Konty KJ,Paladini M,et al.Reassessing Google Flu Trends data for detection of seasonal and pandemic influenza: a comparative epidemiological study at three geographic scales[J].PLoS Comput Biol,2013,9(10):e1003256.

共引文献210

同被引文献600

引证文献43

二级引证文献149

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部