期刊文献+

Different mechanisms underlying divergent responses of autotrophic and heterotrophic respiration to long-term throughfall reduction in a warm-temperate oak forest 被引量:2

在线阅读 下载PDF
导出
摘要 Background:There are many studies on disentangling the responses of autotrophic(AR)and heterotrophic(HR)respiration components of soil respiration(SR)to long-term drought,but few studies have focused on the mechanisms underlying its responses.Methods:To explore the impact of prolonged drought on AR and HR,we conducted the 2-year measurements on soil CO_(2) effluxes in the 7th and 8th year of manipulated throughfall reduction(TFR)in a warm-temperate oak forest.Results:Our results showed long-term TFR decreased HR,which was positively related to bacterial richness.More importantly,some bacterial taxa such as Novosphingobium and norank Acidimicrobiia,and fungal Leptobacillium were identified as major drivers of HR.In contrast,long-term TFR increased AR due to the increased fine root biomass and production.The increased AR accompanied by decreased HR appeared to counteract each other,and subsequently resulted in the unchanged SR under the TFR.Conclusions:Our study shows that HR and AR respond in the opposite directions to long-term TFR.Soil microorganisms and fine roots account for the respective mechanisms underlying the divergent responses of HR and AR to long-term TFR.This highlights the contrasting responses of AR and HR to prolonged drought should be taken into account when predicting soil CO_(2) effluxes under future droughts.
出处 《Forest Ecosystems》 SCIE CSCD 2021年第3期537-547,共11页 森林生态系统(英文版)
基金 supported by the National Key R&D Program of China(No.2018YFC0507301) by Research and Development Project of RIFEEP,Chinese Academy of Forestry(99802–2020).
  • 相关文献

同被引文献19

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部