摘要
以全捷联光学制导飞行器打击运动目标为背景,本文将捷联解耦原理和状态约束控制方法相结合,提出了一种同时考虑导引头视场角约束和执行机构输入约束的新型制导控制一体化设计方法。首先,建立了具有严格反馈形式的全捷联制导控制一体化模型,针对模型的不确定性设计了一种对未知上界平方估计的自适应律,基于积分型障碍Lyapu⁃nov函数结合动态面控制解决了导引头视场角约束的问题,同时采用饱和函数光滑逼近以及Nussbaum增益函数解决了执行机构输入约束的问题。最后,通过Lyapunov理论证明了所设计制导控制一体化方法的一致有界稳定。典型场景的数值仿真结果表明,该方法可以同时满足捷联光学导引头8°,8.5°,9°的视场角约束以及舵执行机构10°的输入约束。
This paper proposes a new type of guidance control for optically guided vehicles that considers the seeker’s field of view constraint and the actuator input constraint simultaneously.Specifically,to al⁃low for a strapdown optically guided vehicle to strike a moving target against a background,we integrate the strapdown decoupling principle with the state constraint control method.This integrated design meth⁃od follows three key steps:firstly,full strapdown guidance and control with strict feedback is modelled;secondly,an adaptive law for estimating the unknown upper bound square is designed for model uncertain⁃ty;thirdly,based on an integral obstacle Lyapunov function combined with dynamic surface control,the seeker’s field of view angle constraint problem is solved.Moreover,the actuator input constraint problem is solved using a smooth approximation to the saturation function in combination with the Nussbaum gain function.Finally,application of the Lyapunov theory proves that the design of the integrated guidance and control method is uniformly bound and stable.Numerical simulation results of typical scenarios show that this method can simultaneously meet the 8°,8.5°,and 9°field of view constraints of strapdown optical seekers and the 10°input constraints of rudder actuators.
作者
邵茂森
徐骋
赵斌
周军
SHAO Mao-sen;XU Cheng;ZHAO Bin;ZHOU Jun(Northwestern Polytechnical University,Xi'an 710072,China;Science and Technology on Complex System Control and Intelligence Agent Cooperation Laboratory,Beijing 100074,China)
出处
《光学精密工程》
EI
CAS
CSCD
北大核心
2021年第6期1291-1300,共10页
Optics and Precision Engineering
基金
国家自然科学基金资助项目(No.61703339)。
关键词
捷联光学导引头
制导控制一体化
状态约束
输入约束
strap-down optical seeker
integrated design of guidance and control
line-of-sight con⁃straint
input constraint