期刊文献+

商圈消费者画像构建与潜在消费者挖掘方法 被引量:6

Consumer Portrait Construction and Potential Consumer Mining Method in Business District
在线阅读 下载PDF
导出
摘要 消费者流量是商圈的生命,稳定且能持续增长的消费者流量是商圈生存发展的关键。如何找到商圈的忠诚与潜在消费者,掌握其特征并进行精准营销,是商圈生存发展面临的难题。针对该问题,通讯运营商能通过信令数据,搜集到访商圈的所有消费者信息,并通过构建客户画像、社交关系画像、消费偏好画像的多维度画像体系掌握消费者的特征,并根据忠诚度区分出忠诚消费者,利用逻辑回归学习不同商圈的忠诚消费者的画像特征,再利用随机森林算法识别面向指定商圈的潜在消费者。经过检验,本文设计的以商圈为使用者的消费者画像构建与潜在消费者挖掘方法的识别准确度达到94%,能准确帮助各个商圈识别出自身的忠诚消费者与潜在消费者。 Consumers flow is the life of a business district,and the stable and sustainable consumers flow is the key to the survival and development of a business district.How to find loyal and potential consumers in a business district,grasp their characteristics and carry out precision marketing is a difficult problem facing the survival and development of the business district.In response to this problem,communication operators can collect all user information in visiting business district through signaling data,and build a multi-dimensional user portrait system that includes customer portraits,social relationship portraits,and consumer preference portraits to grasp the characteristics of consumers,and according to Loyalty calculates loyal consumers,uses logistic regression to learn the profile characteristics of loyal consumers in different business district,and then uses random forest algorithm to identify potential consumers facing designated business district.After testing,the identification accuracy of the consumer profile construction and potential consumer mining method designed in this article with the business district as the user reaches 94%,which can accurately help each business district identify its own loyal consumers and potential consumers.
作者 张春 刘超 刘旭东 陈志豪 江勇 张辉 周辉 胡建村 ZHANG Chun;LIU Chao;LIU Xv-dong;CHEN Zhi-hao;JIANG Yong;ZHANG Hui;ZHOU Hui;HU Jian-cun(China Mobile Information Technology Co.,Ltd.,Harbin 150000,Heilongjiang;Harbin Institute of Technology,Harbin 150000,Heilongjiang)
出处 《电脑与电信》 2021年第6期79-86,共8页 Computer & Telecommunication
关键词 消费者画像 信令数据 忠诚度 逻辑回归 随机森林 精准营销 consumer portrait signaling data loyalty logistic regression random forest precision marketing
  • 相关文献

参考文献7

二级参考文献50

  • 1徐海亮.论精准营销的广告传播[J].济源职业技术学院学报,2007,6(1):30-33. 被引量:21
  • 2Chou L D, Lai N H, Chang Yao-Jen, et al. Mobile Social Network Services for Families With Children with Developmental Disabilities[J]. IEEE Transactions on Information Technology in Biomedicine, 2011, 15(4): 585-593.
  • 3Wasserman S. Social Network Analysis: Methods and Applications[M]. [S. l.]: Cambridge University Press, 1994.
  • 4Weaver A C, Morrison B B. Social Networking[J]. Computer, 2008, 41(2): 97-100.
  • 5Barnes J A. Class and Committees in a Norwegian Island Parish[J]. Human Relations, 1954, 7(1): 39-43.
  • 6Miluzzo E, Lane N D. Sensing Meets Mobile Social Networks: The Design, Implementation and Evaluation of the CenceMe Application[C]//Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems. [S. l.] ACM Press, 2008: 337-350.
  • 7Chang Y J, Liu H H. Mobile Social Networks as Quality of Life Technology for People with Severe Mental Illness[J]. Wireless Communications, 2009, 16(3): 34-40.
  • 8Lugano G. Mobile Social Networking in Theory and Practice[J]. First Monday, 2008, 13(11): 15-20.
  • 9Raento M, Oulasvirta A. ContextPhone: A Prototyping Platform for Context-aware Mobile Applications[J]. IEEE Pervasive Computing, 2005: 4(2): 51-59.
  • 10Arenas A, Duch J. Size Reduction of Complex Networks Preserving Modularity[J]. New Journal of Physics, 2009, 9(1): 176.

共引文献157

同被引文献58

引证文献6

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部