期刊文献+

基于深度网络的推荐系统偏置项改良研究 被引量:1

Research on improvement of bias in recommendation system based on deep neural network
在线阅读 下载PDF
导出
摘要 传统的矩阵分解算法为用户和项目分别独立设置了偏置项,而没有深入挖掘特定用户对于特定项目的隐性偏好;同时,传统的排序预测推荐算法将用户所有打分过的项目都统一地设置为该用户的正例项目(无论用户给出了好评还是差评),这导致训练完成的系统在实际应用中很可能会为用户继续推荐其厌恶的项目。因此提出了一种基于深度网络的推荐系统偏置项改良方案,该改良方案考虑了用户为特定项目所作的评分背后所蕴含的好恶态度,并学习出一个用户-项目联合偏置项加入到推荐过程中以提升推荐性能。在三个公开数据集上进行的对比实验结果表明,该改良方案可以有效地提升推荐的性能表现。 Traditional matrix factorization algorithm sets bias for users and items independently,without digging into the latent preferences of specific users for specific items.As in traditional ranking prediction recommendation algorithm,all the rated items of a user are uniformly set as the user′s positive items(regardless of whether the user gives a good or a bad review).As a result,the trained system is likely to continue to recommend projects that users hate in practical applications.Therefore,an improved bias improvement scheme of recommendation system based on deep neural network is proposed,which takes into account the liking and disliking behind the ratings made by users for specific items,and a joint bias is learned for the recommendation process.The results of comparative experiments on three open datasets show that the improved scheme can effectively improve the recommended performance.
作者 张天蔚 Zhang Tianwei(Shandong Computer Science Center(National Super Computer Center in Jinan),Jinan 250014,China)
出处 《信息技术与网络安全》 2021年第8期42-46,共5页 Information Technology and Network Security
关键词 推荐算法 协同过滤 深度神经网络 隐式反馈 recommendation algorithm collaborative filtering deep neural network implicit feedback
  • 相关文献

参考文献10

二级参考文献53

  • 1Brccsc J, Hcchcrman D, Kadic C. Empirical analysis of predictive algorithms for collaborative filtering. In: Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence (UAI'98). 1998.43~52.
  • 2Goldberg D, Nichols D, Oki BM, Terry D. Using collaborative filtering to weave an information tapestry. Communications of the ACM, 1992,35(12):61~70.
  • 3Resnick P, lacovou N, Suchak M, Bergstrom P, Riedl J. Grouplens: An open architecture for collaborative filtering of netnews. In:Proceedings of the ACM CSCW'94 Conference on Computer-Supported Cooperative Work. 1994. 175~186.
  • 4Shardanand U, Mats P. Social information filtering: Algorithms for automating "Word of Mouth". In: Proceedings of the ACM CHI'95 Conference on Human Factors in Computing Systems. 1995. 210~217.
  • 5Hill W, Stead L, Rosenstein M, Furnas G. Recommending and evaluating choices in a virtual community of use. In: Proceedings of the CHI'95. 1995. 194~201.
  • 6Sarwar B, Karypis G, Konstan J, Riedl J. Item-Based collaborative filtering recommendation algorithms. In: Proceedings of the 10th International World Wide Web Conference. 2001. 285~295.
  • 7Chickering D, Hecherman D. Efficient approximations for the marginal likelihood of Bayesian networks with hidden variables.Machine Learning, 1997,29(2/3): 181~212.
  • 8Dempster A, Laird N, Rubin D. Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, 1977,B39:1~38.
  • 9Thiesson B, Meek C, Chickering D, Heckerman D. Learning mixture of DAG models. Technical Report, MSR-TR-97-30, Redmond:Microsoft Research, 1997.
  • 10Sarwar B, Karypis G, Konstan J, Riedl J. Analysis of recommendation algorithms for E-commerce. In: ACM Conference on Electronic Commerce. 2000. 158~167.

共引文献1182

同被引文献14

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部