期刊文献+

Benchmarking materials property prediction methods:the Matbench test set and Automatminer reference algorithm 被引量:7

原文传递
导出
摘要 We present a benchmark test suite and an automated machine learning procedure for evaluating supervised machine learning(ML)models for predicting properties of inorganic bulk materials.The test suite,Matbench,is a set of 13 ML tasks that range in size from 312 to 132k samples and contain data from 10 density functional theory-derived and experimental sources.
出处 《npj Computational Materials》 SCIE EI CSCD 2020年第1期507-516,共10页 计算材料学(英文)
基金 This work was intellectually led and funded by the United States Department of Energy,Office of Basic Energy Sciences,Early Career Research Program,which provided funding for A.D.,Q.W.,A.G.,D.D.,and A.J.Lawrence Berkeley National Laboratory is funded by the DOE under award DE-AC02-05CH11231 This research used the Lawrencium computational cluster resource provided by the IT Division at the Lawrence Berkeley National Laboratory(Supported by the Director,Office of Science,Office of Basic Energy Sciences,of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231) This research used resources of the National Energy Research Scientific Computing Center(NERSC),a U.S.Department of Energy Office of Science User Facility operated under Contract No.DE-AC02-05CH11231.
  • 相关文献

参考文献5

二级参考文献16

共引文献257

同被引文献31

引证文献7

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部