期刊文献+

基于时变啮合刚度与齿侧间隙的斜齿轮副动力学研究 被引量:3

Research on Dynamics of Helical Gear Pair Based on Time-Varying Meshing Stiffness and Backlash
在线阅读 下载PDF
导出
摘要 为研究斜齿轮副啮合过程中螺旋角与驱动扭矩对斜齿轮副动力学特性的影响,建立了基于时变啮合刚度与齿侧间隙的斜齿轮副6自由度弯扭轴耦合动力学模型。利用斜齿轮副瞬时接触线,计算理论时变啮合刚度;结合齿侧间隙函数,通过4阶龙格库塔数值积分法,求解斜齿轮副的振动响应,分析螺旋角与工况对斜齿轮副振动响应的具体影响。研究发现,随着螺旋角的增大,斜齿轮副主动轮的轴向振动位移明显增大,且不同工况下的斜齿轮副振动响应也有很大区别。 In order to study the influence of spiral angle and driving torque on the dynamic characteristics of helical gear pair in the meshing process of helical gear pair,a 6-DOF coupling dynamic model of helical gear pair based on time-varying meshing stiffness and tooth side clearance was established.The theoretical time-varying meshing stiffness is calculated by using the instantaneous contact line of the helical gear pair.Combined with the tooth side clearance function,the vibration response of the helical gear pair is solved by the fourth-order Runge-Kutta numerical integration method,and the specific influence of the helix angle and working condition on the vibration response of the helical gear pair is analyzed.It is found that the axial vibration displacement of the driving wheel of the helical gear pair increases significantly with the increase of the helix angle,and the vibration responses of the helical gear pair under different working conditions are also very different.
作者 罗辑 王继博 姚璐 LUO Ji;WANG Jibo;YAO Lu(School of Mechanical,Electrical and Vehicle Engineering,Chongqing Jiaotong University,Chongqing 400074)
出处 《现代制造技术与装备》 2021年第6期18-21,共4页 Modern Manufacturing Technology and Equipment
关键词 斜齿轮 时变啮合刚度 齿侧间隙 动力学特性 振动响应 helical gear time-varying mesh stiffness backlash dynamic characteristics vibration response
  • 相关文献

参考文献8

二级参考文献70

  • 1龙慧,张光辉,罗文军.旋转齿轮瞬时接触应力和温度的分析模拟[J].机械工程学报,2004,40(8):24-29. 被引量:58
  • 2王建军,李其汉,李润方.齿轮系统非线性振动研究进展[J].力学进展,2005,35(1):37-51. 被引量:82
  • 3石照耀,唐为军.齿轮整体误差测量系统的重构[J].机械传动,2007,31(1):1-3. 被引量:4
  • 4CAI Y. Simulation on the rotational vibration of helical gears in consideration of the tooth separation phenomenon (a new stiffness function of helical involute tooth pair)[J]. ASME Mech. Des., 1995, 117: 460-469.
  • 5VINAYAK H, SINGH R. Multi-body dynamics and modal analysis of compliant gear bodies[J]. Journal of Sound and Vibration, 1998, 210(2): 171-214.
  • 6GIORGIO B M R B, FRANCESCO E Optimum profile modifications of spur gears by means of genetic algorithms[J]. Journal of Sound and Vibration, 2008, 313: 603-616.
  • 7RAGHOTHAMA A, NARAYANAN S. Bifurcation and chaos in geared rotor bearing system by incremental harmonic balance method[J]. Journal of Sound and Vibration, 1999, 226(3): 469-492.
  • 8LIM T C, LI J. Dynamic analysis of multi-mesh countershaft transmission[J]. Journal of Sound and Vibration, 1999, 219(5): 905-919.
  • 9AMABILI M, RIVOLA A. Dynamic analysis of spur gear pairs: Steady-state response and stability of the SDOF model with time-varying mesh damping[J]. Mechanical System SignalProcess, 1997, 11. 375-390.
  • 10GIORGIO B, FRANCESCO P. Non-smooth dynamics of spur gears with manufacturing errors[J]. Journal of Sound and Vibration, 2007, 306: 271-283.

共引文献134

同被引文献77

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部