期刊文献+

Spectral Petrov-Galerkin Methods for the Second Kind Volterra Type Integro-Differential Equations 被引量:4

原文传递
导出
摘要 This work is to provide general spectral and pseudo-spectral Jacobi-Petrov-Galerkin approaches for the second kind Volterra integro-differential equations.The Gauss-Legendre quadrature formula is used to approximate the integral operator and the inner product based on the Jacobi weight is implemented in the weak formulation in the numerical implementation.For some spectral and pseudo-spectral Jacobi-Petrov-Galerkin methods,a rigorous error analysis in both L2_(ω^(α,β))^(2),and L^(∞)norms is given provided that both the kernel function and the source function are sufficiently smooth.Numerical experiments validate the theoretical prediction.
出处 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2011年第2期216-236,共21页 高等学校计算数学学报(英文版)
基金 supported by the National Natural Science Foundation of China(10871066) Project of Scientific Research Fund of Hunan Provincial Education Department(09K025) Programme for New Century Excellent Talents in University(NCET-06-0712) supported by the Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province supported in part by Natural Science Foundation of Guizhou Province(LKS[2010]05).
  • 相关文献

参考文献1

二级参考文献13

  • 1H. Brunner, Collocation Methods for Volterra Integral and Related Functional Equations Methods, Cambridge University Press 2004.
  • 2H. Brunner, 3.P. Kauthen, The numerical solution of two-dimensional Volterra Integral Equation, IMA d. Numer. Anal., 9 (1989), 45-59.
  • 3H. Brunner and T. Tang, Polynomial spline collocation methods for the nonlinear Basset equation, Comput. Math. Appl., 18 (1989), 449-457.
  • 4C. Canuto, M.Y. Hussaini, A. Quarteroni and T.A. Zang, Spectral Methods: Fundamentals in Single Domains, Springer-Verlag 2006.
  • 5L.M. Delves, J.L. Mohanmed, Computational Methods for Integral Equations, Cambridge University Press 1985.
  • 6G.N. Elnagar and M. Kazemi, Chebyshev spectral solution of nonlinear Volterra-Hammerstein integral equations, J. Comput. Appl. Math., 76 (1996), 147-158.
  • 7H. Fujiwara, High-accurate numerical method for integral equations of the first kind under multiple-precision arithmetic, Preprint, RIMS, Kyoto University, 2006.
  • 8B. Guo and L. Wang, Jacobi interpolation approximations and their applications to singular differential equations, Adv. Comput. Math., 14 (2001), 227-276.
  • 9B. Guo and L. Wang, Jacobi approximations in non-uniformly Jacobi-weighted Sobolev spaces, J. Approx. Theory, 128 (2004), 1-41.
  • 10S. Mckee, T. Tang and T. Diogo, An Euler-type method for two-dimensional Volterra Integral Equations of the first kind, IMA J. Numer. Anal., 20 (2000), 423-440.

共引文献33

同被引文献8

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部