期刊文献+

Incoherent imaging through highly nonstatic and optically thick turbid media based on neural network 被引量:11

原文传递
导出
摘要 Imaging through nonstatic scattering media is one of the major challenges in optics, and encountered in imaging through dense fog, turbid water, and many other situations. Here, we propose a method to achieve single-shot incoherent imaging through highly nonstatic and optically thick turbid media by using an end-to-end deep neural network. In this study, we use fat emulsion suspensions in a glass tank as a turbid medium and an additional incoherent light to introduce strong interference noise. We calibrate that the optical thickness of the tank of turbid media is as high as 16, and the signal-to-interference ratio is as low as -17 dB. Experimental results show that the proposed learning-based approach can reconstruct the object image with high fidelity in this severe environment.
出处 《Photonics Research》 SCIE EI CAS CSCD 2021年第5期I0053-I0061,共9页 光子学研究(英文版)
基金 Chinesisch-Deutsche Zentrum für Wissenschaftsf?rderung(GZ1391) National Natural Science Foundation of China(61991452,62061136005) Chinese Academy of Sciences Key Project(QYZDB-SSW-JSC002)。
关键词 THICK MEDIA NEURAL
  • 相关文献

参考文献1

共引文献40

同被引文献109

引证文献11

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部